Mostrar el registro sencillo del ítem
dc.contributor.author
Andruchow, Esteban
dc.date.available
2022-01-12T19:23:26Z
dc.date.issued
2021-07
dc.identifier.citation
Andruchow, Esteban; Geodesics of projections in von neumann algebras; American Mathematical Society; Proceedings of the American Mathematical Society; 149; 10; 7-2021; 4501-4513
dc.identifier.issn
0002-9939
dc.identifier.uri
http://hdl.handle.net/11336/150001
dc.description.abstract
Let A be a von Neumann algebra and PA the manifold of projections in A. There is a natural linear connection in PA, which in the finite dimensional case coincides with the the Levi-Civita connection of the Grassmann manifold of Cn. In this paper we show that two projections p, q can be joined by a geodesic, which has minimal length (with respect to the metric given by the usual norm of A), if and only if p ∧ q⊥ ∼ p⊥ ∧ q, where ∼ stands for the Murray-von Neumann equivalence of projections. It is shown that the minimal geodesic is unique if and only if p ∧ q⊥ = p⊥ ∧ q = 0. If A is a finite factor, any pair of projections in the same connected component of PA (i.e., with the same trace) can be joined by a minimal geodesic. We explore certain relations with Jones’ index theory for subfactors. For instance, it is shown that if N ⊂M are II1 factors with finite index [M : N ] = t−1, then the geodesic distance d(eN , eM) between the induced projections eN and eM is d(eN , eM) = arccos(t1/2).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Mathematical Society
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
PROJECTIONS
dc.subject
GEODESICS OF PROJECTIONS
dc.subject
VON NEUMANN ALGEBRAS
dc.subject
INDEX FOR SUBFACTORS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Geodesics of projections in von neumann algebras
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-12-03T21:11:25Z
dc.identifier.eissn
1088-6826
dc.journal.volume
149
dc.journal.number
10
dc.journal.pagination
4501-4513
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Providence
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias. Área de Matemática;
dc.journal.title
Proceedings of the American Mathematical Society
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/proc/2021-149-10/S0002-9939-2021-15568-8/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1090/proc/15568
Archivos asociados