Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.date.available
2022-01-12T19:23:26Z  
dc.date.issued
2021-07  
dc.identifier.citation
Andruchow, Esteban; Geodesics of projections in von neumann algebras; American Mathematical Society; Proceedings of the American Mathematical Society; 149; 10; 7-2021; 4501-4513  
dc.identifier.issn
0002-9939  
dc.identifier.uri
http://hdl.handle.net/11336/150001  
dc.description.abstract
Let A be a von Neumann algebra and PA the manifold of projections in A. There is a natural linear connection in PA, which in the finite dimensional case coincides with the the Levi-Civita connection of the Grassmann manifold of Cn. In this paper we show that two projections p, q can be joined by a geodesic, which has minimal length (with respect to the metric given by the usual norm of A), if and only if p ∧ q⊥ ∼ p⊥ ∧ q, where ∼ stands for the Murray-von Neumann equivalence of projections. It is shown that the minimal geodesic is unique if and only if p ∧ q⊥ = p⊥ ∧ q = 0. If A is a finite factor, any pair of projections in the same connected component of PA (i.e., with the same trace) can be joined by a minimal geodesic. We explore certain relations with Jones’ index theory for subfactors. For instance, it is shown that if N ⊂M are II1 factors with finite index [M : N ] = t−1, then the geodesic distance d(eN , eM) between the induced projections eN and eM is d(eN , eM) = arccos(t1/2).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Mathematical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PROJECTIONS  
dc.subject
GEODESICS OF PROJECTIONS  
dc.subject
VON NEUMANN ALGEBRAS  
dc.subject
INDEX FOR SUBFACTORS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Geodesics of projections in von neumann algebras  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-12-03T21:11:25Z  
dc.identifier.eissn
1088-6826  
dc.journal.volume
149  
dc.journal.number
10  
dc.journal.pagination
4501-4513  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Providence  
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias. Área de Matemática;  
dc.journal.title
Proceedings of the American Mathematical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/proc/2021-149-10/S0002-9939-2021-15568-8/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1090/proc/15568