Mostrar el registro sencillo del ítem
dc.contributor.author
Brude, Javier Eugenio
dc.contributor.author
Sasyk, Roman
dc.date.available
2022-01-12T19:16:22Z
dc.date.issued
2021-09
dc.identifier.citation
Brude, Javier Eugenio; Sasyk, Roman; Metric approximations of unrestricted wreath products when the acting group is amenable; Taylor & Francis; Communications In Algebra; 2021; 9-2021; 1-13
dc.identifier.issn
0092-7872
dc.identifier.uri
http://hdl.handle.net/11336/149999
dc.description.abstract
We give a simple and unified proof showing that the unrestricted wreath product of a weakly sofic, sofic, linear sofic, or hyperlinear group by an amenable group is weakly sofic, sofic, linear sofic, or hyperlinear, respectively. By means of the Kaloujnine-Krasner theorem, this implies that group extensions with amenable quotients preserve the four aforementioned metric approximation properties. We also discuss the case of co-amenable groups.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AMENABLE GROUPS
dc.subject
HYPERLINEAR GROUPS
dc.subject
LINEAR SOFIC GROUPS
dc.subject
SOFIC GROUPS
dc.subject
UNRESTRICTED WREATH PRODUCTS
dc.subject
WEAKLY SOFIC GROUPS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Metric approximations of unrestricted wreath products when the acting group is amenable
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-12-03T21:10:06Z
dc.journal.volume
2021
dc.journal.pagination
1-13
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Brude, Javier Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Sasyk, Roman. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.journal.title
Communications In Algebra
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2021.1976790
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/00927872.2021.1976790
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2004.05735
Archivos asociados