Mostrar el registro sencillo del ítem

dc.contributor.author
Marceca, Felipe  
dc.contributor.author
Rocha Viegas, Luciana  
dc.contributor.author
Pregi, Nicolás  
dc.contributor.author
Barbas, María Gabriela  
dc.contributor.author
Hozbor, Daniela Flavia  
dc.contributor.author
Pecci, Adali  
dc.contributor.author
Etchenique, Roberto Argentino  
dc.date.available
2022-01-11T18:28:35Z  
dc.date.issued
2021-04  
dc.identifier.citation
Marceca, Felipe; Rocha Viegas, Luciana; Pregi, Nicolás; Barbas, María Gabriela; Hozbor, Daniela Flavia; et al.; Pool Strategy for Surveillance Testing of SARS-CoV-2; Centro de Estudios sobre Ciencia, Desarrollo y Educación Superior; Science Reviews: from the end of the world; 2; 2; 4-2021; 42-56  
dc.identifier.issn
2683-9288  
dc.identifier.uri
http://hdl.handle.net/11336/149942  
dc.description.abstract
Due to the great morbidity and mortality in the risk groups of the pandemic COVID-19 caused by the emerging coronavirus SARS-CoV-2 and in the absence of effective therapeutic or preventive measures, quarantines, social distancing and the use of masks were the measures most used by health systems to reduce infections. The social, economic and health impact caused by these measures have begun to be evaluated in the different countries. These analyses lead to underestimations because in general they evaluate disease confirmed by a laboratory test and in some cases by epidemiological link without considering asymptomatic or oligosymptomatic infection. Therefore, mitigating fast circulation of the virus requires continuous tracking, detection, and isolation of cases, for which active surveillance able to address asymptomatic cases can make a valuable contribution over the dynamics of the disease in a given society, and to allocate adequate health resources and evaluate the effectiveness of control measures. Mathematical models such as the Susceptible-Exposed-Infectious-Removed (SEIR) allow not only to improve the estimates of the evolution of the pandemic at the local level, but also to evaluate health strategies. In the context of large testing requirements and the expansion of such testing capacity, it is also essential to develop approaches that improve the efficient use of these resources. Active surveillance undoubtedly contributes to improving estimates of virus circulation and it is of particular importance in vulnerable groups of high population density that have one or more risk factors, difficult access to the health system, and inhabit semi-closed facilities such as residential care homes, mental hospitals, prison houses, police stations housing prisoners, etc. Group testing strategies are especially useful for routine community survey and for monitoring of cohesive groups. While the frequency of infection in a population, who have only some symptoms compatible with the disease or do not have any symptoms, may be low, diagnosing even a single positive person typically requires quarantine of the entire group to prevent further spread in the community. In these surveillance strategies, pooling may allow more routine monitoring and detection of low frequency of carriage, thereby improving estimates, informing policy makers, reducing transmission, and alleviating the strain on healthcare services. By means of molecular tests based on RT-qPCR, the pooling strategy has been assayed with different algorithms also for COVID-19, particularly in the asymptomatic population, since a low prevalence of the disease is expected there. This has increased COVID-19 testing throughput while maintaining high sensitivity. Here, we discuss the relevance of some active surveillance strategies to determine key facts about COVID-19 pandemics and review different testing strategies that different countries have applied for tracking SARS-CoV-2.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Centro de Estudios sobre Ciencia, Desarrollo y Educación Superior  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
pool testing  
dc.subject
coronavirus  
dc.subject
RT-qPCR  
dc.subject
Surveillance  
dc.subject
COVID-19  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Epidemiología  
dc.subject.classification
Ciencias de la Salud  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Pool Strategy for Surveillance Testing of SARS-CoV-2  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-01-11T14:31:17Z  
dc.journal.volume
2  
dc.journal.number
2  
dc.journal.pagination
42-56  
dc.journal.pais
Argentina  
dc.journal.ciudad
buenos aires  
dc.description.fil
Fil: Marceca, Felipe. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Rocha Viegas, Luciana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina  
dc.description.fil
Fil: Pregi, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Barbas, María Gabriela. Gobierno de la Provincia de Cordoba. Ministerio de Salud. Laboratorio Central de la Provincia.; Argentina  
dc.description.fil
Fil: Hozbor, Daniela Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; Argentina  
dc.description.fil
Fil: Pecci, Adali. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina  
dc.description.fil
Fil: Etchenique, Roberto Argentino. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.journal.title
Science Reviews: from the end of the world  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://scirevfew.net/index.php/sciencereviews/article/view/39  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.52712/sciencereviews.v2i2.39