Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Genomic prediction of maize yield across European environmental conditions

Millet, Emilie J.; Kruijer, Willem; Coupel Ledru, Aude; Alvarez Prado, SantiagoIcon ; Cabrera Bosquet, Llorenç; Lacube, Sébastien; Charcosset, Alain; Welcker, Claude; van Eeuwijk, Fred; Tardieu, François
Fecha de publicación: 05/2019
Editorial: Nature Publishing Group
Revista: Nature Genetics
ISSN: 1061-4036
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Agricultura

Resumen

The development of germplasm adapted to changing climate is required to ensure food security1,2 . Genomic prediction is a powerful tool to evaluate many genotypes but performs poorly in contrasting environmental scenarios3–7 (genotype × environment interaction), in spite of promising results for flowering time8. New avenues are opened by the development of sensor networks for environmental characterization in thousands of fields9,10. We present a new strategy for germplasm evaluation under genotype × environment interaction. Yield was dissected in grain weight and number and genotype × environment interaction in these components was modeled as genotypic sensitivity to environmental drivers. Environments were characterized using genotype-specific indices computed from sensor data in each field and the progression of phenology calibrated for each genotype on a phenotyping platform. A whole-genome regression approach for the genotypic sensitivities led to accurate prediction of yield under genotype × environment interaction in a wide range of environmental scenarios, outperforming a benchmark approach.
Palabras clave: Yield , Environment
Ver el registro completo
 
Archivos asociados
Tamaño: 3.153Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/149850
DOI: http://dx.doi.org/10.1038/s41588-019-0414-y
URL: https://www.nature.com/articles/s41588-019-0414-y
Colecciones
Articulos(IFEVA)
Articulos de INST.D/INV.FISIOLOGICAS Y ECO.VINCULADAS A L/AGRIC
Citación
Millet, Emilie J.; Kruijer, Willem; Coupel Ledru, Aude; Alvarez Prado, Santiago; Cabrera Bosquet, Llorenç; et al.; Genomic prediction of maize yield across European environmental conditions; Nature Publishing Group; Nature Genetics; 51; 6; 5-2019; 952-956
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES