Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Multi-objective evolutionary approaches for intelligent design of sensor networks in the petrochemical industry

Cecchini, Rocío LujánIcon ; Ponzoni, IgnacioIcon ; Carballido, Jessica AndreaIcon
Fecha de publicación: 02/2012
Editorial: Pergamon-Elsevier Science Ltd
Revista: Expert Systems with Applications
ISSN: 0957-4174
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

The design of optimal sensor networks for an industrial process is a complex problem that requires the resolution of several tasks with a high level of expertise. The first of these subproblems consists in selecting an initial sensor network as the starting point for the instrumentation design. This particular task constitutes a combinatorial optimization problem, where several goals are prosecuted by the designer. Therefore, the initialization procedure can be defined as a multi-objective optimization problem. In this paper, the use of multi-objective evolutionary approaches to assist experts in the design of an initial sensor network is proposed and analyzed. The aim is to contrast the advantages and limitations of Pareto and non-Pareto techniques in the context of this industrial application. The algorithms consider objectives related to cost, reliability and level of information associated with a sensor network. The techniques were evaluated by means of a comparative analysis for a strongly non-linear mathematical model that represents an ammonia synthesis plant. Results have been contrasted in terms of the set coverage and spacing metrics. As a final conclusion, the non-Pareto strategy converged closer to the Pareto front than the Pareto-based algorithms. In contrast, the Pareto-based algorithms achieved better relative distance among solutions than the non-Pareto method. In all cases, the use of evolutionary computation is useful for the expert to take the final decision on the preferred initial sensor network.
Palabras clave: EVOLUTIONARY COMPUTATION , INTELLIGENT SENSOR NETWORK DESIGN , MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 338.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/149739
URL: https://www.sciencedirect.com/science/article/abs/pii/S0957417411012504
DOI: http://dx.doi.org/10.1016/j.eswa.2011.08.119
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Cecchini, Rocío Luján; Ponzoni, Ignacio; Carballido, Jessica Andrea; Multi-objective evolutionary approaches for intelligent design of sensor networks in the petrochemical industry; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 39; 3; 2-2012; 2643-2649
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES