Mostrar el registro sencillo del ítem

dc.contributor.author
Pereira, Marcone C.  
dc.contributor.author
Rossi, Julio Daniel  
dc.contributor.author
Saintier, Nicolas Bernard Claude  
dc.date.available
2022-01-06T16:03:07Z  
dc.date.issued
2020-04  
dc.identifier.citation
Pereira, Marcone C.; Rossi, Julio Daniel; Saintier, Nicolas Bernard Claude; Fractional problems in thin domains; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 193; 4-2020; 1-16  
dc.identifier.issn
0362-546X  
dc.identifier.uri
http://hdl.handle.net/11336/149712  
dc.description.abstract
In this paper we consider nonlocal fractional problems in thin domains. Given open bounded subsets U⊂Rn and V⊂Rm, we show that the solution uε to Δx suε(x,y)+Δy tuε(x,y)=f(x,ε−1y)in U×εV with uε(x,y)=0 if x⁄∈U and y∈εV, verifies that ũε(x,y)≔uε(x,εy)→u0 strongly in the natural fractional Sobolev space associated to this problem. We also identify the limit problem that is satisfied by u0 and estimate the rate of convergence in the uniform norm. Here Δx su and Δy tu are the fractional Laplacian in the 1st variable x (with a Dirichlet condition, u(x)=0 if x⁄∈U) and in the 2nd variable y (with a Neumann condition, integrating only inside V).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DIRICHLET PROBLEM  
dc.subject
NEUMANN PROBLEM  
dc.subject
NONLOCAL FRACTIONAL EQUATIONS  
dc.subject
THIN DOMAINS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Fractional problems in thin domains  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-07T14:43:41Z  
dc.journal.volume
193  
dc.journal.pagination
1-16  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Pereira, Marcone C.. Universidade de Sao Paulo; Brasil  
dc.description.fil
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal Of Nonlinear Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0362546X19300859  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.na.2019.02.024