Mostrar el registro sencillo del ítem
dc.contributor.author
Pereira, Marcone C.
dc.contributor.author
Rossi, Julio Daniel
dc.contributor.author
Saintier, Nicolas Bernard Claude
dc.date.available
2022-01-06T16:03:07Z
dc.date.issued
2020-04
dc.identifier.citation
Pereira, Marcone C.; Rossi, Julio Daniel; Saintier, Nicolas Bernard Claude; Fractional problems in thin domains; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 193; 4-2020; 1-16
dc.identifier.issn
0362-546X
dc.identifier.uri
http://hdl.handle.net/11336/149712
dc.description.abstract
In this paper we consider nonlocal fractional problems in thin domains. Given open bounded subsets U⊂Rn and V⊂Rm, we show that the solution uε to Δx suε(x,y)+Δy tuε(x,y)=f(x,ε−1y)in U×εV with uε(x,y)=0 if x⁄∈U and y∈εV, verifies that ũε(x,y)≔uε(x,εy)→u0 strongly in the natural fractional Sobolev space associated to this problem. We also identify the limit problem that is satisfied by u0 and estimate the rate of convergence in the uniform norm. Here Δx su and Δy tu are the fractional Laplacian in the 1st variable x (with a Dirichlet condition, u(x)=0 if x⁄∈U) and in the 2nd variable y (with a Neumann condition, integrating only inside V).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DIRICHLET PROBLEM
dc.subject
NEUMANN PROBLEM
dc.subject
NONLOCAL FRACTIONAL EQUATIONS
dc.subject
THIN DOMAINS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Fractional problems in thin domains
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-07T14:43:41Z
dc.journal.volume
193
dc.journal.pagination
1-16
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Pereira, Marcone C.. Universidade de Sao Paulo; Brasil
dc.description.fil
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.description.fil
Fil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Journal Of Nonlinear Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0362546X19300859
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.na.2019.02.024
Archivos asociados