Mostrar el registro sencillo del ítem

dc.contributor.author
Saintier, Nicolas Bernard Claude  
dc.contributor.author
Pinasco, Juan Pablo  
dc.contributor.author
Vazquez, Federico  
dc.date.available
2022-01-06T13:46:40Z  
dc.date.issued
2020-06  
dc.identifier.citation
Saintier, Nicolas Bernard Claude; Pinasco, Juan Pablo; Vazquez, Federico; A model for the competition between political mono-polarization and bi-polarization; American Institute of Physics; Chaos; 30; 6; 6-2020; 1-18  
dc.identifier.issn
1054-1500  
dc.identifier.uri
http://hdl.handle.net/11336/149703  
dc.description.abstract
We investigate the phenomena of political bi-polarization in a population of interacting agents by means of a generalized version of the model introduced by Vazquez et al. [Phys. Rev. E 101, 012101 (2020)] for the dynamics of voting intention. Each agent has a propensity p in [0, 1] to vote for one of two political candidates. In an iteration step, two randomly chosen agents i and j with respective propensities p i and p j interact, and then p i either increases by an amount h > 0 with a probability that is a nonlinear function of p i and p j or decreases by h with the complementary probability. We assume that each agent can interact with any other agent (all-to-all interactions). We study the behavior of the system under variations of a parameter q ≥ 0 that measures the nonlinearity of the propensity update rule. We focus on the stability properties of the two distinct stationary states: mono-polarization in which all agents share the same extreme propensity (0 or 1), and bi-polarization where the population is divided into two groups with opposite and extreme propensities. We find that the bi-polarized state is stable for q < q c, while the mono-polarized state is stable for q > q c, where q c (h) is a transition value that decreases as h decreases. We develop a rate equation approach whose stability analysis reveals that q c vanishes when h becomes infinitesimally small. This result is supported by the analysis of a transport equation derived in the continuum h → 0 limit. We also show by Monte Carlo simulations that the mean time τ to reach mono-polarization in a system of size N scales as τ ∼ N α at q c, where α is a nonuniversal exponent that depends on h.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MONO-POLARIZATION  
dc.subject
BI-POLARIZATION  
dc.subject
STABILITY  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A model for the competition between political mono-polarization and bi-polarization  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-07T14:45:11Z  
dc.journal.volume
30  
dc.journal.number
6  
dc.journal.pagination
1-18  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Vazquez, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.journal.title
Chaos  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/5.0004996  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0004996