Mostrar el registro sencillo del ítem

dc.contributor.author
Soler, Santiago Rubén  
dc.contributor.author
Pesce, Agustina  
dc.contributor.author
Gimenez, Mario Ernesto  
dc.contributor.author
Uieda, Leonardo  
dc.date.available
2022-01-05T19:01:11Z  
dc.date.issued
2019-09  
dc.identifier.citation
Soler, Santiago Rubén; Pesce, Agustina; Gimenez, Mario Ernesto; Uieda, Leonardo; Gravitational field calculation in spherical coordinates using variable densities in depth; Wiley Blackwell Publishing, Inc; Geophysical Journal International; 218; 3; 9-2019; 2150-2164  
dc.identifier.issn
0956-540X  
dc.identifier.uri
http://hdl.handle.net/11336/149690  
dc.description.abstract
We present a new methodology to compute the gravitational fields generated by tesseroids (spherical prisms) whose density varies with depth according to an arbitrary continuous function. It approximates the gravitational fields through the Gauss-Legendre Quadrature along with two discretization algorithms that automatically control its accuracy by adaptively dividing the tesseroid into smaller ones. The first one is a preexisting 2-D adaptive discretization algorithm that reduces the errors due to the distance between the tesseroid and the computation point. The second is a new density-based discretization algorithm that decreases the errors introduced by the variation of the density function with depth. The amount of divisions made by each algorithm is indirectly controlled by two parameters: the distance-size ratio and the delta ratio. We have obtained analytical solutions for a spherical shell with radially variable density and compared them to the results of the numerical model for linear, exponential, and sinusoidal density functions. The heavily oscillating density functions are intended only to test the algorithm to its limits and not to emulate a real world case. These comparisons allowed us to obtain optimal values for the distance-size and delta ratios that yield an accuracy of 0.1 per cent of the analytical solutions. The resulting optimal values of distance-size ratio for the gravitational potential and its gradient are 1 and 2.5, respectively. The density-based discretization algorithm produces no discretizations in the linear density case, but a delta ratio of 0.1 is needed for the exponential and most sinusoidal density functions. These values can be extrapolated to cover most common use cases, which are simpler than oscillating density profiles. However, the distance-size and delta ratios can be configured by the user to increase the accuracy of the results at the expense of computational speed. Finally, we apply this new methodology to model the Neuquén Basin, a foreland basin in Argentina with a maximum depth of over 5000 m, using an exponential density function.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
GRAVITY ANOMALIES AND EARTH STRUCTURE  
dc.subject
NUMERICAL APPROXIMATIONS AND ANALYSIS  
dc.subject
NUMERICAL MODELLING  
dc.subject
SATELLITE GRAVITY  
dc.subject.classification
Geoquímica y Geofísica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Gravitational field calculation in spherical coordinates using variable densities in depth  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-01-03T14:02:37Z  
dc.identifier.eissn
1365-246X  
dc.journal.volume
218  
dc.journal.number
3  
dc.journal.pagination
2150-2164  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Soler, Santiago Rubén. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina  
dc.description.fil
Fil: Pesce, Agustina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina  
dc.description.fil
Fil: Gimenez, Mario Ernesto. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto Geofísico Sismológico Volponi; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina  
dc.description.fil
Fil: Uieda, Leonardo. University of Hawaii at Manoa; Estados Unidos  
dc.journal.title
Geophysical Journal International  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/gji/article-abstract/218/3/2150/5514000  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/gji/ggz277