Mostrar el registro sencillo del ítem

dc.contributor.author
Carando, Daniel Germán  
dc.contributor.author
Galicer, Daniel Eric  
dc.date.available
2017-04-06T20:46:06Z  
dc.date.issued
2010-09-29  
dc.identifier.citation
Carando, Daniel Germán; Galicer, Daniel Eric; The symmetric Radon-Nikodým property for tensor norms; Elsevier; Journal Of Mathematical Analysis And Applications; 375; 2; 29-9-2010; 553-565  
dc.identifier.issn
0022-247X  
dc.identifier.uri
http://hdl.handle.net/11336/14933  
dc.description.abstract
We introduce the symmetric-Radon-Nikodým property (sRN pr operty) for finitely generated s-tensor norms β of order n and prove a Lewis type theorem for s-tensor norms with this property. As a consequence, if β is a projective s-tensor norm with the sRN prop- erty, then for every Asplund space E , the canonical map e ⊗ n,s β E ′ → e ⊗ n,s β ′ E ′ is a metric surjection. This can be rephrased as the isometric isomorph ism Q min ( E ) = Q ( E ) for certain polynomial ideal Q . We also relate the sRN property of an s-tensor norm with the A splund or Radon-Nikodým properties of different tensor products. S imilar results for full tensor products are also given. As an application, results concern ing the ideal of n -homogeneous extendible polynomials are obtained, as well as a new proof o f the well known isometric isomorphism between nuclear and integral polynomials on As plund spaces.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Polynomial Ideals  
dc.subject
Symmetric Tensor Products of Banach Spaces  
dc.subject
Radon-Nikodým Property  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The symmetric Radon-Nikodým property for tensor norms  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-06T16:51:31Z  
dc.journal.volume
375  
dc.journal.number
2  
dc.journal.pagination
553-565  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Galicer, Daniel Eric. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Journal Of Mathematical Analysis And Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X10008012  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmaa.2010.09.044