Artículo
Quasi-stationary distributions and Fleming-Viot processes in finite spaces
Fecha de publicación:
06/2011
Editorial:
Applied Probability Trust
Revista:
Journal Of Applied Probability
ISSN:
0021-9002
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Consider a continuous-time Markov process with transition rates matrix Q in the state space Λ ⋃ {0}. In the associated Fleming-Viot process N particles evolve independently in Λ with transition rates matrix Q until one of them attempts to jump to state 0. At this moment the particle jumps to one of the positions of the other particles, chosen uniformly at random. When Λ is finite, we show that the empirical distribution of the particles at a fixed time converges as N → ∞ to the distribution of a single particle at the same time conditioned on not touching {0}. Furthermore, the empirical profile of the unique invariant measure for the Fleming-Viot process with N particles converges as N → ∞ to the unique quasistationary distribution of the one-particle motion. A key element of the approach is to show that the two-particle correlations are of order 1 / N.
Palabras clave:
Fleming Viot Processes
,
Quasi Stationary Distributions
,
Markov Processes
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Asselah, Amine; Ferrari, Pablo Augusto; Groisman, Pablo Jose; Quasi-stationary distributions and Fleming-Viot processes in finite spaces; Applied Probability Trust; Journal Of Applied Probability; 48; 2; 6-2011; 322-332
Compartir
Altmétricas