Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Hybrid-EKF: Hybrid model coupled with extended Kalman filter for real-time monitoring and control of mammalian cell culture

Narayanan, Harini; Behle, Lars; Luna, Martín FranciscoIcon ; Sokolov, Michael; Guillén Gosálbez, Gonzalo; Morbidelli, Massimo; Butté, Alessandro
Fecha de publicación: 05/2020
Editorial: John Wiley & Sons Inc
Revista: Bioengineering And Biotechnology
ISSN: 0006-3592
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Biotecnología Industrial

Resumen

In a decade when Industry 4.0 and quality by design are major technology drivers of biopharma, automated and adaptive process monitoring and control are inevitable requirements and model-based solutions are key enablers in fulfilling these goals. Despite strong advancement in process digitalization, in most cases, the generated datasets are not sufficient for relying on purely data-driven methods, whereas the underlying complex bioprocesses are still not completely understood. In this regard, hybrid models are emerging as a timely pragmatic solution to synergistically combine available process data and mechanistic understanding. In this study, we show a novel application of the hybrid-EKF framework, that is, hybrid models coupled with an extended Kalman filter for real-time monitoring, control, and automated decision-making in mammalian cell culture processing. We show that, in the considered application, the predictive monitoring accuracy of such a framework improves by at least 35% when developed with hybrid models with respect to industrial benchmark tools based on PLS models. In addition, we also highlight the advantages of this approach in industrial applications related to conditional process feeding and process monitoring. With regard to the latter, for an industrial use case, we demonstrate that the application of hybrid-EKF as a soft sensor for titer shows a 50% improvement in prediction accuracy compared with state-of-the-art soft sensor tools.
Palabras clave: ADAPTIVE CONTROL , BIOPROCESSING , EXTENDED KALMAN FILTER , HYBRID MODELS , PROCESS MONITORING
Ver el registro completo
 
Archivos asociados
Tamaño: 2.893Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/149276
DOI: http://dx.doi.org/10.1002/bit.27437
URL: https://onlinelibrary.wiley.com/doi/10.1002/bit.27437
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Narayanan, Harini; Behle, Lars; Luna, Martín Francisco; Sokolov, Michael; Guillén Gosálbez, Gonzalo; et al.; Hybrid-EKF: Hybrid model coupled with extended Kalman filter for real-time monitoring and control of mammalian cell culture; John Wiley & Sons Inc; Bioengineering And Biotechnology; 117; 9; 5-2020; 2703-2714
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES