Artículo
Robust functional principal components: A projection-pursuit approach
Fecha de publicación:
12/2011
Editorial:
Inst Mathematical Statistics
Revista:
Annals Of Statistics, The
ISSN:
0090-5364
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In many situations, data are recorded over a period of time and may be regarded as realizations of a stochastic process. In this paper, robust estimators for the principal components are considered by adapting the projection pursuit approach to the functional data setting. Our approach combines robust projection-pursuit with different smoothing methods. Consistency of the estimators are shown under mild assumptions. The performance of the classical and robust procedures are compared in a simulation study under different contamination schemes.
Palabras clave:
Fisher-Consistency
,
Functional Data
,
Method of Sieves
,
Penalization
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Bali, Juan Lucas; Boente Boente, Graciela Lina; Tyler, David E.; Wang, Jane Ling; Robust functional principal components: A projection-pursuit approach; Inst Mathematical Statistics; Annals Of Statistics, The; 39; 6; 12-2011; 2852-2882
Compartir
Altmétricas