Mostrar el registro sencillo del ítem

dc.contributor.author
Lucini, María Magdalena  
dc.contributor.author
Leeuwen, Peter Jan van  
dc.contributor.author
Pulido, Manuel Arturo  
dc.date.available
2021-12-23T14:56:51Z  
dc.date.issued
2021-03  
dc.identifier.citation
Lucini, María Magdalena; Leeuwen, Peter Jan van; Pulido, Manuel Arturo; Model error estimation using the expectation maximization algorithm and a particle flow filter; Society of Industrial and Applied Mathematics; Journal on Uncertainty Quantification; 9; 2; 3-2021; 681-707  
dc.identifier.issn
2166-2525  
dc.identifier.uri
http://hdl.handle.net/11336/149232  
dc.description.abstract
Model error covariances play a central role in the performance of data assimilation methods applied to nonlinear state-space models. However, these covariances are largely unknown in most of the applications. A misspecification of the model error covariance has a strong impact on the computation of the posterior probability density function, leading to unreliable estimations and even to a total failure of the assimilation procedure. In this work, we propose the combination of the expectation maximization (EM) algorithm with an efficient particle filter to estimate the model error covariance using a batch of observations. Based on the EM algorithm principles, the proposed method encompasses two stages: the expectation stage, in which a particle filter is used with the present updated value of the model error covariance as given to find the probability density function that maximizes the likelihood, followed by a maximization stage, in which the expectation under the probability density function found in the expectation step is maximized as a function of the elements of the model error covariance. This novel algorithm here presented combines the EM algorithm with a fixed point algorithm and does not require a particle smoother to approximate the posterior densities. We demonstrate that the new method accurately and efficiently solves the linear model problem. Furthermore, for the chaotic nonlinear Lorenz-96 model the method is stable even for observation error covariance 10 times larger than the estimated model error covariance matrix and also is successful in moderately large dimensional situations where the dimension of the estimated matrix is 40 x 40.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Society of Industrial and Applied Mathematics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
EM ALGORITHM  
dc.subject
MODEL ERROR COVARIANCE  
dc.subject
PARTICLE FILTERS  
dc.subject
STATE-SPACE MODELS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Model error estimation using the expectation maximization algorithm and a particle flow filter  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-12-03T20:36:52Z  
dc.journal.volume
9  
dc.journal.number
2  
dc.journal.pagination
681-707  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Philadelfia  
dc.description.fil
Fil: Lucini, María Magdalena. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina  
dc.description.fil
Fil: Leeuwen, Peter Jan van. State University of Colorado - Fort Collins; Estados Unidos  
dc.description.fil
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina  
dc.journal.title
Journal on Uncertainty Quantification  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1137/19M1297300