Artículo
The structure of bivariate rational hypergeometric functions
Fecha de publicación:
10/2011
Editorial:
Oxford University Press
Revista:
International Mathematics Research Notices
ISSN:
1073-7928
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We describe the structure of all codimension-2 lattice configurations A which admit a stable rational A-hypergeometric function, that is a rational function F all the partial derivatives of which are nonzero, and which is a solution of the A-hypergeometric system of partial differential equations defined by Gel′ fand, Kapranov, and Zelevinsky. We show, moreover, that all stable rational A-hypergeometric functions may be described by toric residues and apply our results to study the rationality of bivariate series the coefficients of which are quotients of factorials of linear forms.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cattani, Eduardo; Dickenstein, Alicia Marcela; Rodriguez Villegas, Fernando; The structure of bivariate rational hypergeometric functions; Oxford University Press; International Mathematics Research Notices; 2011; 11; 10-2011; 2496-2533
Compartir
Altmétricas