Mostrar el registro sencillo del ítem

dc.contributor.author
Acosta, Gabriel  
dc.contributor.author
Armentano, Maria Gabriela  
dc.date.available
2017-04-06T20:42:20Z  
dc.date.issued
2011-09  
dc.identifier.citation
Acosta, Gabriel; Armentano, Maria Gabriela; Finite element approximations in a non-lipschitz domain: part II; American Mathematical Society; Mathematics Of Computation; 80; 276; 9-2011; 1949-1978  
dc.identifier.issn
0025-5718  
dc.identifier.uri
http://hdl.handle.net/11336/14905  
dc.description.abstract
In a paper by R. Dur ́ an, A. Lombardi, and the authors (2007) the finite element method was applied to a non-homogeneous Neumann problem on a cuspidal domain Ω ⊂ R 2 , and quasi-optimal order error estimates in the energy norm were obtained for certain graded meshes. In this paper, we study the error in the L 2 norm obtaining similar resul ts by using graded meshes of the type considered in that paper. Since many classical results in the theory Sobolev spaces do not apply to the domain under consideration, our estimates require a particular duality treatment working on appropriate weighted spaces. On the other hand, since the discrete domain Ω h verifies Ω ⊂ Ω h ,inthe above-mentioned paper the source term of the Poisson problem was taken equal to 0 outside Ω in the variational discrete formulation. In this article we also consider the case in which this condition does not hold and obtain more general estimates, which can be useful in different problems, for instance in the study of the effect of numerical integration, or in eigenvalue approximations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Mathematical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Cuspidal Domains  
dc.subject
Finite Elements  
dc.subject
Graded Meshes  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Finite element approximations in a non-lipschitz domain: part II  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-05T15:12:34Z  
dc.journal.volume
80  
dc.journal.number
276  
dc.journal.pagination
1949-1978  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Acosta, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Armentano, Maria Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Mathematics Of Computation  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/mcom/2011-80-276/S0025-5718-2011-02481-6/