Mostrar el registro sencillo del ítem

dc.contributor.author
Silveira, Eduarda M.O.  
dc.contributor.author
Radeloff, Volker  
dc.contributor.author
Martinuzzi, Sebastián  
dc.contributor.author
Martínez Pastur, Guillermo José  
dc.contributor.author
Rivera, Luis Osvaldo  
dc.contributor.author
Politi, Natalia  
dc.contributor.author
Lizarraga, Leonidas  
dc.contributor.author
Farwell, Laura S.  
dc.contributor.author
Elsen, Paul R.  
dc.contributor.author
Pidgeon, Anna Michle  
dc.date.available
2021-12-20T12:48:00Z  
dc.date.issued
2021-06  
dc.identifier.citation
Silveira, Eduarda M.O.; Radeloff, Volker; Martinuzzi, Sebastián; Martínez Pastur, Guillermo José; Rivera, Luis Osvaldo; et al.; Spatio-temporal remotely sensed indices identify hotspots of biodiversity conservation concern; Elsevier Science Inc.; Remote Sensing of Environment; 258; 6-2021; 1-19  
dc.identifier.issn
0034-4257  
dc.identifier.uri
http://hdl.handle.net/11336/149008  
dc.description.abstract
Over the course of a year, vegetation and temperature have strong phenological and seasonal patterns, respectively, and many species have adapted to these patterns. High inter-annual variability in the phenology of vegetation and in the seasonality of temperature pose a threat for biodiversity. However, areas with high spatial variability likely have higher ecological resilience where inter-annual variability is high, because spatial variability indicates presence of a range of resources, microclimatic refugia, and habitat conditions. The integration of inter-annual and spatial variability is thus important for biodiversity conservation. Areas where spatial variability is low and inter-annual variability is high are likely to limit resilience to disturbance. In contrast, areas of high spatial variability may be high priority candidates for protection. Our goal was to develop spatio-temporal remotely sensed indices to identify hotspots of biodiversity conservation concern. We generated indices that capture the inter-annual and spatial variability of vegetation greenness and land surface temperature and integrated them to identify areas of high, medium, and low biodiversity conservation concern. We applied our method in Argentina (2.8 million km2), a country with a wide range of climates and biomes. To generate the inter-annual variability indices, we analyzed MODIS Enhanced Vegetation Index (EVI) and Land Surface Temperature (LST) time series from 2001 to 2018, fitted curves to obtain annual phenological and seasonal metrics, and calculated their inter-annual variability. To generate the spatial variability indices, we calculated standard deviation image texture of Landsat 8 EVI and LST. When we integrated our inter-annual and spatial variability indices, areas in the northeast and parts of southern Argentina were the hotspots of highest conservation concern. High inter-annual variability poses a threat in these areas, because spatial variability is low. These are areas where management efforts could be valuable. In contrast, areas in the northwest and central-west are where protection should be strongly considered because the high spatial variability may confer resilience to disturbance, due to the variety of conditions and resources within close proximity. We developed remotely sensed indices to identify hotspots of high and low conservation concern at scales relevant to biodiversity conservation, which can be used to target management actions in order to minimize biodiversity loss.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Inc.  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EVI  
dc.subject
IMAGE TEXTURE  
dc.subject
LANDSAT  
dc.subject
LST  
dc.subject
MODIS  
dc.subject
PHENOLOGY  
dc.subject
TEMPERATURE  
dc.subject
TIME SERIES  
dc.subject
VEGETATION GREENNESS  
dc.subject.classification
Conservación de la Biodiversidad  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Spatio-temporal remotely sensed indices identify hotspots of biodiversity conservation concern  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-12-03T18:03:31Z  
dc.journal.volume
258  
dc.journal.pagination
1-19  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Silveira, Eduarda M.O.. University of Wisconsin; Estados Unidos  
dc.description.fil
Fil: Radeloff, Volker. University of Wisconsin; Estados Unidos  
dc.description.fil
Fil: Martinuzzi, Sebastián. University of Wisconsin; Estados Unidos  
dc.description.fil
Fil: Martínez Pastur, Guillermo José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina  
dc.description.fil
Fil: Rivera, Luis Osvaldo. Universidad Nacional de Jujuy; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Politi, Natalia. Universidad Nacional de Jujuy; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Lizarraga, Leonidas. Universidad Nacional de Jujuy; Argentina  
dc.description.fil
Fil: Farwell, Laura S.. University of Wisconsin; Estados Unidos  
dc.description.fil
Fil: Elsen, Paul R.. Wildlife Conservation Society; Estados Unidos  
dc.description.fil
Fil: Pidgeon, Anna Michle. University of Wisconsin; Estados Unidos  
dc.journal.title
Remote Sensing of Environment  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0034425721000869  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.rse.2021.112368