Mostrar el registro sencillo del ítem
dc.contributor.author
Ding, Wenjian
dc.contributor.author
Sun, Zhe
dc.contributor.author
Wu, Xingxing
dc.contributor.author
Yang, Zhenglu
dc.contributor.author
Solé Casals, Jordi
dc.contributor.author
Caiafa, César Federico
dc.date.available
2021-12-17T14:17:58Z
dc.date.issued
2021-11
dc.identifier.citation
Ding, Wenjian; Sun, Zhe; Wu, Xingxing; Yang, Zhenglu; Solé Casals, Jordi; et al.; Tensor completion algorithms for estimating missing values in multi-channel audio signals; Pergamon-Elsevier Science Ltd; Computers & Electrical Engineering; 11-2021; 107561, 1-12
dc.identifier.issn
0045-7906
dc.identifier.uri
http://hdl.handle.net/11336/148943
dc.description.abstract
Audio inpainting is a widely used technology in the real world since audio signals with missing data are pervasive in many scenarios. The majority of existing works address the time gaps in single-channel audio signals, while completing multi-channel audio signals is rarely investigated.In this work, we tackle this issue using four different tensor completion algorithms and we evaluate them on speech audio datasets with gaps in the time domain. Based on extensive quantitative and qualitative experiments, the tensor completion algorithms generally achieve a superior predictive performance, including when the gap duration of the signals reaches values of up to 200 ms. Specifically, the experimental results illustrate that all of the applied tensor completion algorithms yield at least 56% improvement in signal restoration performance compared with single-channel based methods. Therefore, the tensor based approaches can capture the underlying latent structure over different channels to reconstruct incomplete multi-channel data.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
audio impainting
dc.subject
tensor completion
dc.subject
signal reconstruction
dc.subject
multichannel signals
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Tensor completion algorithms for estimating missing values in multi-channel audio signals
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-12-03T19:44:33Z
dc.journal.pagination
107561, 1-12
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Ding, Wenjian. Nankai University; China
dc.description.fil
Fil: Sun, Zhe. Nankai University; China
dc.description.fil
Fil: Wu, Xingxing. Nankai University; China
dc.description.fil
Fil: Yang, Zhenglu. Nankai University; China
dc.description.fil
Fil: Solé Casals, Jordi. University of Catalonia; España
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.journal.title
Computers & Electrical Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0045790621005036
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compeleceng.2021.107561
Archivos asociados