Mostrar el registro sencillo del ítem

dc.contributor.author
Ding, Wenjian  
dc.contributor.author
Sun, Zhe  
dc.contributor.author
Wu, Xingxing  
dc.contributor.author
Yang, Zhenglu  
dc.contributor.author
Solé Casals, Jordi  
dc.contributor.author
Caiafa, César Federico  
dc.date.available
2021-12-17T14:17:58Z  
dc.date.issued
2021-11  
dc.identifier.citation
Ding, Wenjian; Sun, Zhe; Wu, Xingxing; Yang, Zhenglu; Solé Casals, Jordi; et al.; Tensor completion algorithms for estimating missing values in multi-channel audio signals; Pergamon-Elsevier Science Ltd; Computers & Electrical Engineering; 11-2021; 107561, 1-12  
dc.identifier.issn
0045-7906  
dc.identifier.uri
http://hdl.handle.net/11336/148943  
dc.description.abstract
Audio inpainting is a widely used technology in the real world since audio signals with missing data are pervasive in many scenarios. The majority of existing works address the time gaps in single-channel audio signals, while completing multi-channel audio signals is rarely investigated.In this work, we tackle this issue using four different tensor completion algorithms and we evaluate them on speech audio datasets with gaps in the time domain. Based on extensive quantitative and qualitative experiments, the tensor completion algorithms generally achieve a superior predictive performance, including when the gap duration of the signals reaches values of up to 200 ms. Specifically, the experimental results illustrate that all of the applied tensor completion algorithms yield at least 56% improvement in signal restoration performance compared with single-channel based methods. Therefore, the tensor based approaches can capture the underlying latent structure over different channels to reconstruct incomplete multi-channel data.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
audio impainting  
dc.subject
tensor completion  
dc.subject
signal reconstruction  
dc.subject
multichannel signals  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Tensor completion algorithms for estimating missing values in multi-channel audio signals  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-12-03T19:44:33Z  
dc.journal.pagination
107561, 1-12  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Ding, Wenjian. Nankai University; China  
dc.description.fil
Fil: Sun, Zhe. Nankai University; China  
dc.description.fil
Fil: Wu, Xingxing. Nankai University; China  
dc.description.fil
Fil: Yang, Zhenglu. Nankai University; China  
dc.description.fil
Fil: Solé Casals, Jordi. University of Catalonia; España  
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.journal.title
Computers & Electrical Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0045790621005036  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compeleceng.2021.107561