Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A constitutive equation and generalized Gassmann modulus for multimineral porous media

Carcione, Jose M.; Helle, Hans B.; Santos, Juan EnriqueIcon ; Ravazzoli, Claudia LeonorIcon
Fecha de publicación: 22/03/2005
Editorial: Society of Exploration Geophysicists
Revista: Geophysics
ISSN: 0016-8033
e-ISSN: 1942-2156
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Geoquímica y Geofísica

Resumen

We derive the time-domain stress-strain relation for a porous medium composed of n - 1 solid frames and a saturating fluid. The relation holds for nonuniform porosity and can be used for numerical simulation of wave propagation. The strain-energy density can be expressed in such a way that the two phases (solid and fluid) can be mathematically equivalent. From this simplified expression of strain energy, we analogize two-, three-, and n-phase porous media and obtain the corresponding coefficients (stiffnesses). Moreover, we obtain an approx imation for the generalized Gassmann modulus. The Gassmann modulus is the bulk modulus of a saturated porous medium whose matrix (frame) is homogeneous. That is, the medium consists of two homogeneous constituents: a mineral composing the frame and a fluid. Gassmann's modulus is obtained at the low-frequency limit of Biot's theory of poroelasticity. Here, we assume that all constituents move in phase, a condition similar to the dynamic compatibility condition used by Biot, by which the P-wave velocity is equal to Gassmann's velocity at all frequencies. Our results are compared with those of the Berryman-Milton (BM) model, which provides an exact generalization of Gassmann's modulus to the three-phase case. The model is then compared to the wet-rock moduli obtained by static finite-element simulations on digitized images of microstructure and is used to fit experimental data for shaly sandstones. Finally, an example of a multimineral rock (n > 3) saturated with different fluids is given.
Palabras clave: Gassmann , Porous media
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 161.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/148916
URL: https://library.seg.org/doi/10.1190/1.1897035
DOI: https://doi.org/10.1190/1.1897035
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Carcione, Jose M.; Helle, Hans B.; Santos, Juan Enrique; Ravazzoli, Claudia Leonor; A constitutive equation and generalized Gassmann modulus for multimineral porous media; Society of Exploration Geophysicists; Geophysics; 70; 2; 22-3-2005; 17-26
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES