Mostrar el registro sencillo del ítem

dc.contributor.author
Bonomo, Flavia  
dc.contributor.author
Faenza, Yuri  
dc.contributor.author
Oriolo, Gianpaolo  
dc.date.available
2017-04-05T20:59:02Z  
dc.date.issued
2012-04  
dc.identifier.citation
Bonomo, Flavia; Faenza, Yuri; Oriolo, Gianpaolo; On coloring problems with local constraints; Elsevier; Discrete Mathematics; 312; 12-13; 4-2012; 2027-2039  
dc.identifier.issn
0012-365X  
dc.identifier.uri
http://hdl.handle.net/11336/14888  
dc.description.abstract
We deal with some generalizations of the graph coloring problem on classes of perfect graphs. Namely we consider the μ-coloring problem (upper bounds for the color on each vertex), the precoloring extension problem (a subset of vertices colored beforehand), and a problem generalizing both of them, the (γ,μ)-coloring problem (lower and upper bounds for the color on each vertex). We characterize the complexity of all those problems on clique-trees of different heights, providing polynomial-time algorithms for the cases that are easy. These results have interesting corollaries. First, one can observe on clique-trees of different heights the increasing complexity of the chain k-coloring, μ-coloring, (γ,μ)-coloring, and list-coloring. Second, clique-trees of height 2 are the first known example of a class of graphs where μ-coloring is polynomial-time solvable and precoloring extension is NP-complete, thus being at the same time the first example where μ-coloring is polynomially solvable and (γ,μ)-coloring is NP-complete. Last, we show that theμ-coloring problem on unit interval graphs is NP-complete. These results answer three questions from Bonomo et al. [F. Bonomo, G. Durán, J. Marenco, Exploring the complexity boundary between coloring and list-coloring, Annals of Operations Research 169 (1) (2009) 3–16].  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Graph Coloring  
dc.subject
Clique-Trees  
dc.subject
Unit Interval Graphs  
dc.subject
Computational Complexity  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On coloring problems with local constraints  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-05T15:12:29Z  
dc.journal.volume
312  
dc.journal.number
12-13  
dc.journal.pagination
2027-2039  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Bonomo, Flavia. Universita Tor Vergata; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.description.fil
Fil: Faenza, Yuri. Universita Di Padova; Italia  
dc.description.fil
Fil: Oriolo, Gianpaolo. Universita Tor Vergata; Italia  
dc.journal.title
Discrete Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.disc.2012.03.019  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0012365X12001343