Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Feature selection for proximity estimation in COVID-19 contact tracing apps based on Bluetooth Low Energy (BLE)

Madoery, Pablo GustavoIcon ; Detke, Ramiro FernandoIcon ; Blanco, Lucas Manuel; Comerci, Sandro; Fraire, Juan; González Montoro, Aldana MaríaIcon ; Bellassai Gauto, Juan CarlosIcon ; Britos, Grisel MaribelIcon ; Ojeda, Silvia; Finochietto, Jorge ManuelIcon
Fecha de publicación: 10/2021
Editorial: Elsevier
Revista: Pervasive and Mobile Computing
ISSN: 1574-1192
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Telecomunicaciones

Resumen

During the COVID-19 pandemic, contact tracing apps based on the Bluetooth Low Energy (BLE) technology found in smartphones have been deployed by multiple countries despite BLE's debatable performance for determining close contacts among users. Current solutions estimate proximity based on a single feature: the mean attenuation of the BLE signal. In this context, a new generation of these apps which better exploits data from the BLE signal and other sensors available on phones can be fostered. Collected data can be used to extract multiple features that feed machine learning models which can potentially improve the accuracy of today's solutions. In this work, we consider the use of machine learning models to evaluate different feature sets that can be extracted from the received BLE signal, and assess the performance gain as more features are introduced in these models. Since indoor conditions have a strong impact in assessing the risk of being exposed to the SARS-CoV-2, we analyze the environment (indoor or outdoor) role in these models, aiming at understanding the need for apps that could increase proximity accuracy if aware of its environment. Results show that a better accuracy can be obtained in outdoor locations with respect to indoor ones, and that indoor proximity estimation can benefit more from the introduction of more features with respect to the outdoor estimation case. Accuracy can be increased about 10% when multiple features are considered if the device is aware of its environment, reaching a performance of up to 83% in indoor spaces and up to 91% in outdoor ones. These results encourage future contact tracing apps to integrate this awareness not only to better assess the associated risk of a given environment but also to improve the proximity accuracy for detecting close contacts.
Palabras clave: BLUETOOTH , CONTACT TRACING , COVID-19 , FEATURE SELECTION , MACHINE LEARNING , PROXIMITY ESTIMATION
Ver el registro completo
 
Archivos asociados
Tamaño: 997.2Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/148851
DOI: http://dx.doi.org/10.1016/j.pmcj.2021.101474
Colecciones
Articulos(IDIT)
Articulos de INSTITUTO DE ESTUDIOS AVANZADOS EN INGENIERIA Y TECNOLOGIA
Citación
Madoery, Pablo Gustavo; Detke, Ramiro Fernando; Blanco, Lucas Manuel; Comerci, Sandro; Fraire, Juan; et al.; Feature selection for proximity estimation in COVID-19 contact tracing apps based on Bluetooth Low Energy (BLE); Elsevier; Pervasive and Mobile Computing; 77; 10-2021; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES