Mostrar el registro sencillo del ítem

dc.contributor.author
Acosta Rodriguez, Gabriel  
dc.contributor.author
Duran, Ricardo Guillermo  
dc.contributor.author
Lopez Garcia, Fernando Alfonso  
dc.date.available
2017-04-05T20:58:40Z  
dc.date.issued
2013-01  
dc.identifier.citation
Acosta Rodriguez, Gabriel; Duran, Ricardo Guillermo; Lopez Garcia, Fernando Alfonso; Korn inequality and divergence operator: Counterexamples and optimality of weighted estimates; American Mathematical Society; Proceedings Of The American Mathematical Society; 141; 1; 1-2013; 217-232  
dc.identifier.issn
0002-9939  
dc.identifier.uri
http://hdl.handle.net/11336/14883  
dc.description.abstract
The Korn inequality and related results on solutions of the divergence in Sobolev spaces have been widely studied since the pioneering works by Korn and Friedrichs. In particular, it is known that this inequality is valid for Lipschitz domains as well as for the more general class of John domains. On the other hand, a few known counterexamples show that those results are not valid for certain bounded domains having external cusps. The goal of this paper is to give very simple counterexamples for a class of cuspidal domains in Rn. Moreover, we show that these counterexamples can be used to prove the optimality of recently obtained results involving weighted Sobolev spaces.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Mathematical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Korn Inequality  
dc.subject
Divergence Operator  
dc.subject
Bad Domains  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Korn inequality and divergence operator: Counterexamples and optimality of weighted estimates  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-05T15:12:19Z  
dc.journal.volume
141  
dc.journal.number
1  
dc.journal.pagination
217-232  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Providence  
dc.description.fil
Fil: Acosta Rodriguez, Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Duran, Ricardo Guillermo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Lopez Garcia, Fernando Alfonso. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Proceedings Of The American Mathematical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2013-141-01/S0002-9939-2012-11408-X/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1090/S0002-9939-2012-11408-X