Artículo
On the change of root numbers under twisting and applications
Fecha de publicación:
10/2013
Editorial:
American Mathematical Society
Revista:
Proceedings Of The American Mathematical Society
ISSN:
0002-9939
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The purpose of this article is to show how the root number of a modular form changes by twisting in terms of the local Weil-Deligne representation at each prime ideal. As an application, we show how one can for each odd prime p, determine whether a modular form (or a Hilbert modular form) with trivial nebentypus is Steinberg, Principal Series or Supercuspidal at p by analyzing the change of sign under a suitable twist. We also explain the case p = 2, where twisting is not enough in general.
Palabras clave:
Local Factors
,
Twisting Epsilon Factors
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Pacetti, Ariel Martín; On the change of root numbers under twisting and applications; American Mathematical Society; Proceedings Of The American Mathematical Society; 141; 8; 10-2013; 2615-2628
Compartir
Altmétricas