Artículo
A singular perturbation problem for the p(x)-Laplacian
Fecha de publicación:
06/2013
Editorial:
Asociación Argentina de Matemática Aplicada, Computacional e Industrial
Revista:
Matemática Aplicada Computacional e Industrial
ISSN:
2314-3282
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We present results for the following singular perturbation problem:
∆p(x)uε := div(|∇uε(x)| p(x)−2∇uε) = βε(uε) + f ε, uε ≥ 0 (Pε(f ε))
in Ω ⊂ RN , where ε > 0, βε(s) = 1 εβ( s ε ), with β a Lipschitz function satisfying β > 0 in (0, 1), β ≡ 0 outside (0, 1) and β(s) ds = M. The functions uε and f ε are uniformly bounded. We prove uniform Lipschitz regularity, we pass to the limit (ε → 0) and we show that limit functions are weak solutions to a free boundary problem.
Palabras clave:
Free Boundary Problem
,
Variable Exponent Spaces
,
Singular Perturbation
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Lederman, Claudia Beatriz; Wolanski, Noemi Irene; A singular perturbation problem for the p(x)-Laplacian; Asociación Argentina de Matemática Aplicada, Computacional e Industrial; Matemática Aplicada Computacional e Industrial; 4; 6-2013; 485-488
Compartir