Artículo
Cobalt ferrite nanoparticles under high pressure
Saccone, Fabio Daniel
; Ferrari, Sergio
; Errandonea, Daniel; Florencia Grinblat; Bilovol, Vitaliy
; Agouram, S.
Fecha de publicación:
08/2015
Editorial:
American Institute Of Physics
Revista:
Journal of Applied Physics
ISSN:
0021-8979
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe2O4) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B0 = 204 GPa) is considerably larger than the value previously reported for bulk CoFe2O4 (B0 = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B0 = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.
Palabras clave:
Cobalt Ferrite
,
Nanoparticles
,
High Pressure
,
Xrd
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INTECIN)
Articulos de INST.D/TEC.Y CS.DE LA ING."HILARIO FERNANDEZ LONG"
Articulos de INST.D/TEC.Y CS.DE LA ING."HILARIO FERNANDEZ LONG"
Citación
Saccone, Fabio Daniel; Ferrari, Sergio; Errandonea, Daniel; Florencia Grinblat; Bilovol, Vitaliy; et al.; Cobalt ferrite nanoparticles under high pressure; American Institute Of Physics; Journal of Applied Physics; 118; 17; 8-2015; 75903-75903
Compartir
Altmétricas