Mostrar el registro sencillo del ítem
dc.contributor.author
Lozano Rosas, R.
dc.contributor.author
Lamas, Diego Germán

dc.contributor.author
Sánchez Ochoa, Francisco
dc.contributor.author
Cocoletzi, Gregorio H.
dc.contributor.author
Karthik, T. V. K.
dc.contributor.author
Robles Águila, M.J.
dc.date.available
2021-12-07T18:12:27Z
dc.date.issued
2021-11
dc.identifier.citation
Lozano Rosas, R.; Lamas, Diego Germán; Sánchez Ochoa, Francisco; Cocoletzi, Gregorio H.; Karthik, T. V. K.; et al.; CO2 sensing properties of WO3 powder: experimental and theoretical studies; Springer; Applied Physics A: Materials Science and Processing; 127; 11; 11-2021; 1-28
dc.identifier.issn
0947-8396
dc.identifier.uri
http://hdl.handle.net/11336/148413
dc.description.abstract
Tungsten oxide (WO3) powders were obtained in this work by both wet chemical synthesis and homogeneous precipitation with ultrasound-assisted radiation methods. Experimental and theoretical investigations were performed to study the effect of the synthesis method and molarity concentration on the structural, optical, electric, and gas sensing properties of WO3. X-ray powder diffraction and Raman spectroscopy confirmed the presence of the monoclinic γ-phase. Rietveld refinement and size/strain calculations were done to perform a complete powder diffraction data analysis. The bandgap was calculated based on UV–Visible Diffuse Reflectance Spectroscopy data, resulting in 2.55 and 2.58 eV for the prepared samples by wet chemical and homogeneous precipitation methods, respectively. These experimental measurements were explained by first-principles total energy calculations, and the structural and electric properties of WO3 (002) surface were determined. Five atomic models were built with the purpose of determining the most stable structure of this surface with different oxygen terminations. Sensing tests were carried out for all the WO3 samples when interacting with carbon dioxide (CO2) molecules to analyze their performance as gas detecting devices. Parameters such as the sensing response, surface resistance behavior and response/recovery times were investigated in detail. Experimental tests confirmed that the maximum sensing response is obtained at 500 ppm of CO2, when operated at 300 °C. Based on the characterizations and gas sensing results, a CO2 gas sensing mechanism of WO3 was proposed and discussed in this work. Finally, the competitive properties of WO3 as a semiconductor-based gas sensor for CO2 detection were confirmed.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CO2 DETECTION
dc.subject
SENSING PROPERTIES
dc.subject
SENSORS
dc.subject
TUNGSTEN OXIDE
dc.subject
ULTRASOUND RADIATION
dc.subject.classification
Ingeniería de los Materiales

dc.subject.classification
Ingeniería de los Materiales

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
CO2 sensing properties of WO3 powder: experimental and theoretical studies
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-11-09T18:54:36Z
dc.identifier.eissn
1432-0630
dc.journal.volume
127
dc.journal.number
11
dc.journal.pagination
1-28
dc.journal.pais
Alemania

dc.journal.ciudad
Berlín
dc.description.fil
Fil: Lozano Rosas, R.. Benemérita Universidad Autónoma de Puebla; México
dc.description.fil
Fil: Lamas, Diego Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; Argentina
dc.description.fil
Fil: Sánchez Ochoa, Francisco. Universidad Nacional Autónoma de México; México
dc.description.fil
Fil: Cocoletzi, Gregorio H.. Benemérita Universidad Autónoma de Puebla; México
dc.description.fil
Fil: Karthik, T. V. K.. Universidad Autónoma del Estado de Hidalgo; México
dc.description.fil
Fil: Robles Águila, M.J.. Benemérita Universidad Autónoma de Puebla; México
dc.journal.title
Applied Physics A: Materials Science and Processing

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://link.springer.com/article/10.1007%2Fs00339-021-04960-5
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00339-021-04960-5
Archivos asociados