Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Visualizing the superfamily of metallo-β-lactamases through sequence similarity network neighborhood connectivity analysis

Gonzalez, Javier MarceloIcon
Fecha de publicación: 01/2021
Editorial: Elsevier
Revista: Heliyon
ISSN: 2405-8440
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Bioquímica y Biología Molecular

Resumen

Protein sequence similarity networks (SSNs) constitute a convenient approach to analyze large polypeptide sequence datasets, and have been successfully applied to study a number of protein families over the past decade. SSN analysis is herein combined with traditional cladistic and phenetic phylogenetic analysis (respectively based on multiple sequence alignments and all-against-all three-dimensional protein structure comparisons) in order to assist the ancestral reconstruction and integrative revision of the superfamily of metallo-β-lactamases (MBLs). It is shown that only 198 out of 15,292 representative nodes contain at least one experimentally obtained protein structure in the Protein Data Bank or a manually annotated SwissProt entry, that is to say, only 1.3 % of the superfamily has been functionally and/or structurally characterized. Besides, neighborhood connectivity coloring, which measures local network interconnectivity, is introduced for detection of protein families within SSN clusters. This approach provides a clear picture of how many families remain unexplored in the superfamily, while most MBL research is heavily biased towards a few families. Further research is suggested in order to determine the SSN topological properties, which will be instrumental for the improvement of automated sequence annotation methods.
Palabras clave: METALLO-LACTAMASE , NEIGHBORHOOD CONNECTIVITY , PROTEIN SUPERFAMILY , SEQUENCE SIMILARITY NETWORK , TANGLEGRAM
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.917Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/148302
URL: https://www.sciencedirect.com/science/article/pii/S2405844020327092
DOI: http://dx.doi.org/10.1016/j.heliyon.2020.e05867
Colecciones
Articulos(INBIONATEC)
Articulos de INSTITUTO DE BIONANOTECNOLOGIA DEL NOA
Citación
Gonzalez, Javier Marcelo; Visualizing the superfamily of metallo-β-lactamases through sequence similarity network neighborhood connectivity analysis; Elsevier; Heliyon; 7; 1; 1-2021; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES