Mostrar el registro sencillo del ítem

dc.contributor.author
Salaberría, Florencia  
dc.contributor.author
Delpino, Claudio  
dc.contributor.author
Palla, Camila Andrea  
dc.contributor.author
Carrin, Maria Elena  
dc.date.available
2021-12-03T11:49:52Z  
dc.date.issued
2021-10  
dc.identifier.citation
Salaberría, Florencia; Delpino, Claudio; Palla, Camila Andrea; Carrin, Maria Elena; Kinetic modeling of the production of fatty acids using lipases from castor bean powder as biocatalyst; Institution of Chemical Engineers; Chemical Engineering Research & Design; 174; 10-2021; 331-344  
dc.identifier.issn
0263-8762  
dc.identifier.uri
http://hdl.handle.net/11336/148035  
dc.description.abstract
This work provides experimental data and mathematical modeling of the hydrolysis reaction of high oleic sunflower oil catalyzed by lipase powder (LP) from castor bean seeds. The production of fatty acids (FA) at different times (0.5–48 h), temperatures (30–50 °C) and concentrations of LP (0.006 and 0.012 gLP/goil) was experimentally tested. As expected, an increase in LP concentration and reaction temperature caused an increase of the initial reaction rate. The highest FA concentrations at long reaction times were obtained using 30 and 37 °C, while 45 and 50 °C showed a marked lipase thermal inactivation. Despite this, thermal inactivation effects were still detected at 37 °C using 0.006 gLP/goil, although undetected at the highest tested LP concentration. Two mathematical models were used to fit the experimental data in order to analyze FA production at tested conditions. The first one was a hyperbolic empirical model for FA concentration as a function of reaction time, which permitted the estimation of initial reaction rates and comparisons with similar reaction systems. Furthermore, a first principles model of a chain reaction system, including temperature inactivation, was also applied and kinetic constants were estimated as Arrhenius-type temperature functions. Results showed that both proposed models provided good mathematical representations of the hydrolysis reaction of high oleic sunflower oil catalyzed by LP from castor bean at the specific studied conditions. Although the second one is far more complex, it allows to predict the behavior at different conditions within the analyzed ranges, describing not only the final product (FA) but also the intermediate ones. Furthermore, this proposed first principles model was successfully validated against published experimental data. Thus, depending on the requirements and available data, both models could be helpful tools to represent and/or study the hydrolysis catalyzed by lipases from castor bean seeds.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institution of Chemical Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CASTOR BEAN  
dc.subject
HYDROLYSIS REACTION  
dc.subject
LIPASE  
dc.subject
MATHEMATICAL MODELING  
dc.subject
THERMAL INACTIVATION  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Kinetic modeling of the production of fatty acids using lipases from castor bean powder as biocatalyst  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-11-15T16:18:32Z  
dc.journal.volume
174  
dc.journal.pagination
331-344  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Salaberría, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina  
dc.description.fil
Fil: Delpino, Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina  
dc.description.fil
Fil: Palla, Camila Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina  
dc.description.fil
Fil: Carrin, Maria Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina  
dc.journal.title
Chemical Engineering Research & Design  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0263876221003348  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cherd.2021.08.016