Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Structural analysis of relevance propagation models

Xamena, EduardoIcon ; Brignole, Nélida BeatrizIcon ; Maguitman, Ana GabrielaIcon
Fecha de publicación: 12/2021
Editorial: Elsevier Science
Revista: Knowledge-Based Systems
ISSN: 0950-7051
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Relevance relations constitute the core of information retrieval. Topical ontologies, such as collaborative webpage classification projects, can provide a basis for identifying and analyzing such relations. New meaningful relevance relations can be automatically inferred from these ontologies by composing existing ones. In this work, several relevance propagation models are analyzed in terms of complex network theory. Structural properties such as Characteristic path length, Clustering coefficient and Degree distribution are computed over the models in order to understand the nature of each underlying network. This analysis raises interesting points about the Small-world and Scale-free structure of some relevance propagation models. Moreover, other connectivity and centrality measures are computed to gain additional insight into the topology of relevance. Finally, the analysis is complemented by providing visualizations of the k-core decomposition of different relevance propagation models. To illustrate the generalizability of the proposed methodology the analysis is carried out on an ontology from a different domain. The major theoretical implication of this analysis is the derivation of new instruments to typify semantic networks derived from relevance relations. The results can be exploited in a pragmatic way, as the parameters and properties derived by this analysis can serve as prior knowledge to algorithms for the automatic or semi-automatic construction of semantic networks.
Palabras clave: COMPLEX NETWORKS , RELEVANCE PROPAGATION , TOPIC ONTOLOGIES , TOPOLOGICAL ANALYSIS
Ver el registro completo
 
Archivos asociados
Tamaño: 3.258Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/148032
URL: https://www.sciencedirect.com/science/article/abs/pii/S095070512100825X
DOI: http://dx.doi.org/10.1016/j.knosys.2021.107563
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos(ICSOH)
Articulos de INST.DE INVEST. EN CS. SOC. Y HUMANIDADES
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Xamena, Eduardo; Brignole, Nélida Beatriz; Maguitman, Ana Gabriela; Structural analysis of relevance propagation models; Elsevier Science; Knowledge-Based Systems; 234; 63; 12-2021; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES