Mostrar el registro sencillo del ítem

dc.contributor.author
Garces Correa, Maria Agustina  
dc.contributor.author
Orosco, Lorena Liliana  
dc.contributor.author
Diez, Pablo Federico  
dc.contributor.author
Laciar Leber, Eric  
dc.date.available
2021-11-30T05:40:10Z  
dc.date.issued
2019-12  
dc.identifier.citation
Garces Correa, Maria Agustina; Orosco, Lorena Liliana; Diez, Pablo Federico; Laciar Leber, Eric; Adaptive Filtering for Epileptic Event Detection in the EEG; Institute of Biomedical Engineering; Journal of Medical and Biological Engineering; 39; 6; 12-2019; 912-918  
dc.identifier.issn
1609-0985  
dc.identifier.uri
http://hdl.handle.net/11336/147667  
dc.description.abstract
Purpose The development of online seizure detection techniques as well as prediction methods are very critical. Patient quality of life could improve signifcantly if the beginning of a seizure could be predicted or detected early. Methods This paper proposes a method to automatically detect epileptic seizures based on adaptive flters and signal averaging. The process was applied to 425 h of epileptic EEG records from CHB-MIT EEG database. The developed algorithm does not require any training since it is simple and involves low processing time. Therefore, it can be implemented in real time as well as ofine. Results Three thresholds were evaluated and calculated as 10, 20 and 30 times the median value of ST(n). The threshold of 20 showed the best relation between SEN and SPE. In this case, these indexes reached average values, across all the patients, of 90.3% and 73.7% respectively. Conclusions The proposed method has several strengths, for example: that no training is required due to the automatic adaptation to the threshold to each new EEG record. The algorithm could be implemented in real time. It is simple owing to its low processing time which makes it suitable for the analysis of long-term records and a large number of channels. The system could be implemented on electronic devices for warning purposes (of the seizure onset). It employs methods to process signals that were not used with epileptic seizure detection in EEG, such as in the case of adaptive predictive flters.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Biomedical Engineering  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
ADAPTIVE FILTER  
dc.subject
EEG  
dc.subject
EPILEPTIC SEIZURE  
dc.subject
SIGNAL PROCESSING  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Adaptive Filtering for Epileptic Event Detection in the EEG  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-18T21:20:12Z  
dc.identifier.eissn
2199-4757  
dc.journal.volume
39  
dc.journal.number
6  
dc.journal.pagination
912-918  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Garces Correa, Maria Agustina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina  
dc.description.fil
Fil: Orosco, Lorena Liliana. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina  
dc.description.fil
Fil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina  
dc.description.fil
Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina  
dc.journal.title
Journal of Medical and Biological Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs40846-019-00467-w  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s40846-019-00467-w