Capítulo de Libro
Recurrent Neural Networks for Predicting Mobile Device State
Título del libro: Encyclopedia of Information Science and Technology
Rodriguez, Juan Manuel
; Zunino Suarez, Alejandro Octavio
; Tommasel, Antonela
; Mateos Diaz, Cristian Maximiliano
Otros responsables:
Mehdi Khosrow Pour, D.B.A.
Fecha de publicación:
2017
Editorial:
IGI Global
ISBN:
9781522522553
Idioma:
Inglés
Clasificación temática:
Resumen
Nowadays, mobile devices are ubiquitous in modern life as they allow users to perform virtually any task, from checking e-mails to playing video games. However, many of these operations are conditioned by the state of mobile devices. Therefore, knowing the current state of mobile devices and predicting their future states is a crucial issue in different domains, such as context-aware applications or ad-hoc networking. Several authors have proposed to use different machine learning methods for predicting some aspect of mobile devices´ future states. This work aims at predicting mobile devices´ battery charge, whether it is plugged to A/C, and screen and WiFi state. To fulfil this goal, the current state of a mobile device can be regarded as the consequence of the previous sequence of states, meaning that future states can be predicted by known previous ones. This work focuses on using Recurrent Neural Networks for predicting future states.
Archivos asociados
Licencia
Identificadores
Colecciones
Capítulos de libros(ISISTAN)
Capítulos de libros de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Capítulos de libros de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Rodriguez, Juan Manuel; Zunino Suarez, Alejandro Octavio; Tommasel, Antonela; Mateos Diaz, Cristian Maximiliano; Recurrent Neural Networks for Predicting Mobile Device State; IGI Global; 2017; 6658-6670
Compartir