Mostrar el registro sencillo del ítem

dc.contributor.author
Villaverde, Jorge Eduardo  
dc.contributor.author
Godoy, Daniela Lis  
dc.contributor.author
Amandi, Analia Adriana  
dc.date.available
2021-11-29T10:51:11Z  
dc.date.issued
2006-05-10  
dc.identifier.citation
Villaverde, Jorge Eduardo; Godoy, Daniela Lis; Amandi, Analia Adriana; Learning styles' recognition in e-learning environments with feed-forward neural networks; Blackwell Publishing; Journal Of Computer Assisted Learning; 22; 3; 10-5-2006; 197-206  
dc.identifier.issn
0266-4909  
dc.identifier.uri
http://hdl.handle.net/11336/147576  
dc.description.abstract
People have unique ways of learning, which may greatly affect the learning process and, therefore, its outcome. In order to be effective, e-learning systems should be capable of adapting the content of courses to the individual characteristics of students. In this regard, some educational systems have proposed the use of questionnaires for determining a student learning style; and then adapting their behaviour according to the students' styles. However, the use of questionnaires is shown to be not only a time-consuming investment but also an unreliable method for acquiring learning style characterisations. In this paper, we present an approach to recognize automatically the learning styles of individual students according to the actions that he or she has performed in an e-learning environment. This recognition technique is based upon feed-forward neural networks.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Blackwell Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
LEARNING STYLES  
dc.subject
NEURAL NETWORKS  
dc.subject
WEB-BASED INSTRUCTION  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Learning styles' recognition in e-learning environments with feed-forward neural networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-04-28T20:44:12Z  
dc.journal.volume
22  
dc.journal.number
3  
dc.journal.pagination
197-206  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Villaverde, Jorge Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.journal.title
Journal Of Computer Assisted Learning  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/j.1365-2729.2006.00169.x