Artículo
Renyi mutual information inequalities from Rindler positivity
Fecha de publicación:
10/12/2019
Editorial:
Springer
Revista:
Journal of High Energy Physics
ISSN:
1126-6708
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Rindler positivity is a property that holds in any relativistic Quantum Field Theory and implies an infinite set of inequalities involving the exponential of the Rényi mutual information In (Ai,A¯ j) between Ai and A¯ j, where Ai is a spacelike region in the right Rindler wedge and A¯ j is the wedge reflection of Aj. We explore these inequalities in order to get local inequalities for In (A,A¯) as a function of the distance between A and its mirror region A¯. We show that the assumption, based on the cluster property of the vacuum, that In goes to zero when the distance goes to infinity, implies the more stringent and simple condition that Fn≡ e(n−1)I n should be a completely monotonic function of the distance, meaning that all the even (odd) derivatives are non-negative (non-positive). In the case of a CFT, we show that conformal invariance implies stronger conditions, including a sort of monotonicity of the Rényi mutual information for pairs of balls. An application of these inequalities to obtain constraints for the OPE coefficients of the 4-point function of certain twist operators is also discussed.
Palabras clave:
CONFORMAL FIELD THEORY
,
FIELD THEORIES IN LOWER DIMENSIONS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Blanco, David Daniel; Lanosa, Leandro Federico; Leston, Mauricio; Pérez Nadal, Guillermo; Renyi mutual information inequalities from Rindler positivity; Springer; Journal of High Energy Physics; 2019; 78; 10-12-2019; 1-17
Compartir
Altmétricas
5 readers on Mendeley