Mostrar el registro sencillo del ítem

dc.contributor.author
Cholaquidis, A.  
dc.contributor.author
Fraiman, R.  
dc.contributor.author
Sued, Raquel Mariela  
dc.date.available
2021-11-26T13:41:26Z  
dc.date.issued
2020-12  
dc.identifier.citation
Cholaquidis, A.; Fraiman, R.; Sued, Raquel Mariela; On semi-supervised learning; Springer; Test; 29; 4; 12-2020; 914-937  
dc.identifier.issn
1133-0686  
dc.identifier.uri
http://hdl.handle.net/11336/147485  
dc.description.abstract
Major efforts have been made, mostly in the machine learning literature, to construct good predictors combining unlabelled and labelled data. These methods are known as semi-supervised. They deal with the problem of how to take advantage, if possible, of a huge amount of unlabelled data to perform classification in situations where there are few labelled data. This is not always feasible: it depends on the possibility to infer the labels from the unlabelled data distribution. Nevertheless, several algorithms have been proposed recently. In this work, we present a new method that, under almost necessary conditions, attains asymptotically the performance of the best theoretical rule when the size of the unlabelled sample goes to infinity, even if the size of the labelled sample remains fixed. Its performance and computational time are assessed through simulations and in the well- known “Isolet” real data of phonemes, where a strong dependence on the choice of the initial training sample is shown. The main focus of this work is to elucidate when and why semi-supervised learning works in the asymptotic regime described above. The set of necessary assumptions, although reasonable, show that semi-parametric methods only attain consistency for very well-conditioned problems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CONSISTENCY  
dc.subject
SEMI-SUPERVISED LEARNING  
dc.subject
SMALL TRAINING SAMPLE  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On semi-supervised learning  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-09T20:15:51Z  
dc.journal.volume
29  
dc.journal.number
4  
dc.journal.pagination
914-937  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Cholaquidis, A.. Universidad de la República; Uruguay  
dc.description.fil
Fil: Fraiman, R.. Universidad de la República; Uruguay  
dc.description.fil
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Test  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11749-019-00690-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11749-019-00690-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1805.09180