Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Automatic detection of pipe-flange reflections in GPR data sections using supervised learning

Bordón, PabloIcon ; Bonomo, Nestor EduardoIcon ; Martinelli, Hilda PatriciaIcon
Fecha de publicación: 11/2019
Editorial: Elsevier Science
Revista: Journal Of Applied Geophysics
ISSN: 0926-9851
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente

Resumen

Ground Penetrating radar (GPR) is a method widely used to study the near-surface subsoil. Many GPR applications require the acquisition of large volumes of data. In these cases, the processing and analysis of the data involve considerable amounts of time and human effort, and the possibility of errors increases. Considering this, the implementation of dependable methods for the automatic detection of GPR response-patterns of the targeted structures becomes clear, because they can contribute to the efficiency and reliability of the interpretation. In this work, we present three methods for automatic detection of pipe-flange signals in constant-offset reflection-GPR images. These methods were obtained using well-known supervised machine learning techniques, and data acquired during a previous study of an extensive section of a pipeline. The first two methods are based on support vector machines (SVM), combined with the image descriptors local binary patterns (LBP) and histogram of oriented gradients (HOG), and the third, on artificial neural networks (ANN). The training and validation of these types of algorithms require large numbers of positive and negative samples. From the mentioned study, we had only 16 experimental flange-patterns. Then, in this work, they were taken as references, together with available documentation on the geometry and materials of the pipe and flanges, for building a broad database of synthetic patterns corresponding to different depths of the pipe and characteristics of the environment. These patterns constitute the set of positive samples used for training and validation. They were also used for the final test of the algorithms. The negative samples for the three stages were directly extracted from the profiles. The results obtained indicate the usefulness of the proposed methodologies to identify the flanges. The best performance corresponded to the ANN, closely followed by SVM combined with HOG, and finally SVM with LBP. In particular, the ANN provided rates of false positive (FP) predictions for the validation and test samples of about 3%, and rates of false negative (FN) predictions of 1.67% for the validation samples and 18.75% for the test samples. Greater FN rates for the test experimental samples, in comparison to those obtained for the validation synthetic samples, were also observed for both SVM algorithms. The detection failures mainly originated in that some complex features of the experimental flange responses could not be appropriately reproduced through the performed numerical simulations, and therefore, some of the patterns were not satisfactorily represented in the sets of positive samples used for training and validation. A first option to improve the results is to obtain a significant number and variety of experimental samples of flange responses and use them to train and validate the algorithms. Other alternatives are to use more sophisticated numerical simulation environments and to find more efficient attributes of the data.
Palabras clave: ANN , AUTOMATIC DETECTION , GPR , PIPE-FLANGE , SVM
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 16.48Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/147424
URL: https://www.sciencedirect.com/science/article/abs/pii/S0926985118304956
DOI: http://dx.doi.org/10.1016/j.jappgeo.2019.103856
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Bordón, Pablo; Bonomo, Nestor Eduardo; Martinelli, Hilda Patricia; Automatic detection of pipe-flange reflections in GPR data sections using supervised learning; Elsevier Science; Journal Of Applied Geophysics; 170; 103856; 11-2019
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES