Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Quality flaw prediction in spanish Wikipedia: A case of study with verifiability flaws

Ferretti, Edgardo; Cagnina, Leticia CeciliaIcon ; Paiz, Viviana; Delle Donne, Sebastián; Zacagnini, Rodrigo; Errecalde, Marcelo Luis
Fecha de publicación: 11/2018
Editorial: Pergamon-Elsevier Science Ltd
Revista: Information Processing & Management
ISSN: 0306-4573
e-ISSN: 1873-5371
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In this work, we present the first quality flaw prediction study for articles containing the two most frequent verifiability flaws in Spanish Wikipedia: articles which do not cite any references or sources at all (denominated Unreferenced) and articles that need additional citations for verification (so-called Refimprove). Based on the underlying characteristics of each flaw, different state-of-the-art approaches were evaluated. For articles not citing any references, a well-established rule-based approach was evaluated and interesting findings show that some of them suffer from Refimprove flaw instead. Likewise, for articles that need additional citations for verification, the well-known PU learning and one-class classification approaches were evaluated. Besides, new methods were compared and a new feature was also proposed to model this latter flaw. The results showed that new methods such as under-bagged decision trees with sum or majority voting rules, biased-SVM, and centroid-based balanced SVM, perform best in comparison with the ones previously published.
Palabras clave: INFORMATION QUALITY , QUALITY FLAW PREDICTION , SEMI-SUPERVISED LEARNING , SUPERVISED LEARNING , WIKIPEDIA
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.279Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/147261
URL: https://www.sciencedirect.com/science/article/pii/S0306457317309329?via%3Dihub
DOI: https://doi.org/10.1016/j.ipm.2018.08.003
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Citación
Ferretti, Edgardo; Cagnina, Leticia Cecilia; Paiz, Viviana; Delle Donne, Sebastián; Zacagnini, Rodrigo; et al.; Quality flaw prediction in spanish Wikipedia: A case of study with verifiability flaws; Pergamon-Elsevier Science Ltd; Information Processing & Management; 54; 6; 11-2018; 1169-1181
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES