Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

SOCH. An ML-based pipeline for PET automatic segmentation by heuristic algorithms means

Scarinci, Ignacio EmanuelIcon ; Valente, Mauro AndresIcon ; Pérez, Pedro AntonioIcon
Fecha de publicación: 01/2020
Editorial: Elsevier Ltd
Revista: Informatics in Medicine Unlocked
ISSN: 2352-9148
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

Nowadays, nuclear medicine procedures have become a standard for several pathologies, both for diagnosis and therapeutic purposes. Also, regarding therapeutic applications, the demand for novel techniques and new radioisotopes is increasing worldwide. Due to the high dose rates involved in therapy procedures, this aspect requires significant efforts related to the development of more accurate methods and protocols for individualized patient dosimetry estimations. New theranostic procedures allowing joint diagnosis/treatment implementation proves to be suitable for image-guided dosimetry. Therefore, appropriate image segmentation becomes a key issue for tissues/organs identification. Implementation of machine learning models for digital image processing is a promising opportunity to complement expert clinical analysis. This work presents SOCH, an original machine learning-based pipeline capable of PET/CT unsupervised automatic segmentation by heuristic algorithms means using clustering and machine learning techniques. Obtained results suggested, preliminary, that pipeline flows based on K-Means and HDBSCAN algorithms are capable of PET/CT image segmentation, proving to be a promising tool to assist expert clinicians in daily procedures.
Palabras clave: HEURISTIC ALGORITHMS , MACHINE LEARNING , PET/CT IMAGING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 6.012Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/147133
URL: https://linkinghub.elsevier.com/retrieve/pii/S2352914820306328
DOI: https://doi.org/10.1016/j.imu.2020.100481
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Citación
Scarinci, Ignacio Emanuel; Valente, Mauro Andres; Pérez, Pedro Antonio; SOCH. An ML-based pipeline for PET automatic segmentation by heuristic algorithms means; Elsevier Ltd; Informatics in Medicine Unlocked; 21; 1-2020; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES