Mostrar el registro sencillo del ítem

dc.contributor.author
Abalos, Julio Fernando  
dc.contributor.author
Reula, Oscar Alejandro  
dc.date.available
2021-11-17T23:27:44Z  
dc.date.issued
2020-09  
dc.identifier.citation
Abalos, Julio Fernando; Reula, Oscar Alejandro; On necessary and sufficient conditions for strong hyperbolicity in systems with constraints; IOP Publishing; Classical and Quantum Gravity; 37; 18; 9-2020; 1-39  
dc.identifier.issn
0264-9381  
dc.identifier.uri
http://hdl.handle.net/11336/147132  
dc.description.abstract
In this work, we study constant-coefficient first order systems of partial differential equations and give necessary and sufficient conditions for those systems to have a well-posed Cauchy problem. In many physical applications, due to the presence of constraints, the number of equations in the PDE system is larger than the number of unknowns, thus the standard Kreiss conditions can not be directly applied to check whether the system admits a well-posed initial value formulation. In this work, we find necessary and sufficient conditions such that there exists a reduced set of equations, of the same dimensionality as the set of unknowns, which satisfy Kreiss conditions and so are well defined and properly behaved evolution equations. We do that by studying the systems using the Kronecker decomposition of matrix pencils and, once the conditions are met, finding specific families of reductions which render the system strongly hyperbolic. We show the power of the theory in some examples: Klein Gordon, the ADM, and the BSSN equations by writing them as first order systems, and studying their Kronecker decomposition and general reductions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ADM AND BSSN EQUATIONS  
dc.subject
CONSTRAINT EQUATIONS  
dc.subject
EVOLUTION EQUATIONS  
dc.subject
HYPERBOLIC REDUCTIONS  
dc.subject
KRONECKER DECOMPOSITION  
dc.subject
PARTIAL DIFFERENTIAL EQUATIONS  
dc.subject
STRONG HYPERBOLICITY  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On necessary and sufficient conditions for strong hyperbolicity in systems with constraints  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-06T16:43:54Z  
dc.identifier.eissn
1361-6382  
dc.journal.volume
37  
dc.journal.number
18  
dc.journal.pagination
1-39  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Abalos, Julio Fernando. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina  
dc.description.fil
Fil: Reula, Oscar Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina  
dc.journal.title
Classical and Quantum Gravity  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6382/ab954c  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1361-6382/ab954c  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1811.05558