Mostrar el registro sencillo del ítem

dc.contributor.author
Gobbi, Beatriz  
dc.contributor.author
Van Rompaey, Anton  
dc.contributor.author
Loto, Dante Ernesto  
dc.contributor.author
Gasparri, Nestor Ignacio  
dc.contributor.author
Vanacker, Veerle  
dc.date.available
2021-11-17T16:08:40Z  
dc.date.issued
2020-12-07  
dc.identifier.citation
Gobbi, Beatriz; Van Rompaey, Anton; Loto, Dante Ernesto; Gasparri, Nestor Ignacio; Vanacker, Veerle; Comparing forest structural attributes derived from UAV-based point clouds with conventional forest inventories in the dry chaco; MDPI AG; Remote Sensing; 12; 23; 7-12-2020; 1-23  
dc.identifier.issn
2072-4292  
dc.identifier.uri
http://hdl.handle.net/11336/147065  
dc.description.abstract
Anthropogenic activity leading to forest structural and functional changes needs specific ecological indicators and monitoring techniques. Since decades, forest structure, composition, biomass, and functioning have been studied with ground-based forest inventories. Nowadays, satellites survey the earth, producing imagery at different spatial and temporal resolutions. However, measuring the ecological state of large extensions of forest is still challenging. To reconstruct the three-dimensional forest structure, the structure from motion (SfM) algorithm was applied to imagery taken by an unmanned aerial vehicle (UAV). Structural indicators from UAV-SfM products are then compared to forest inventory indicators of 64 circular plots of 1000 m2 in a subtropical dry forest. Our data indicate that the UAV-SfM indicators provide a valuable alternative for ground-based forest inventory’ indicators of the upper canopy structure. Based on the correlation between ground-based measures and UAV-SfM derived indicators, we can state that the UAV-SfM technique provides reliable estimates of the mean and maximum height of the upper canopy. The performance of UAV-SfM techniques to characterize the undergrowth forest structure is low, as UAV-SfM indicators derived from the point cloud in the lower forest strata are not suited to provide correct estimates of the vegetation density in the lower strata. Besides structural information, UAV-SfM derived indicators, such as canopy cover, can provide relevant ecological information as the indicators are related to structural, functional, and/or compositional aspects, such as biomass or compositional dominance. Although UAV-SfM techniques cannot replace the wealth of data collected during ground-based forest inventories, its strength lies in the three-dimensional (3D) monitoring of the tree canopy at cm-scale resolution, and the versatility of the technique to provide multi-temporal datasets of the horizontal and vertical forest structure.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI AG  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ABOVE-GROUND BIOMASS  
dc.subject
CANOPY HEIGHT  
dc.subject
CHACO  
dc.subject
FOREST INVENTORY  
dc.subject
FOREST MONITORING  
dc.subject
UAV-SFM  
dc.subject.classification
Conservación de la Biodiversidad  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Sensores Remotos  
dc.subject.classification
Ingeniería del Medio Ambiente  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Silvicultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Comparing forest structural attributes derived from UAV-based point clouds with conventional forest inventories in the dry chaco  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-07T14:30:30Z  
dc.journal.volume
12  
dc.journal.number
23  
dc.journal.pagination
1-23  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Gobbi, Beatriz. Université Catholique de Louvain; Bélgica  
dc.description.fil
Fil: Van Rompaey, Anton. Katholikie Universiteit Leuven; Bélgica  
dc.description.fil
Fil: Loto, Dante Ernesto. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; Argentina  
dc.description.fil
Fil: Gasparri, Nestor Ignacio. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; Argentina  
dc.description.fil
Fil: Vanacker, Veerle. Université Catholique de Louvain; Bélgica  
dc.journal.title
Remote Sensing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/12/23/4005  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/rs12234005