Mostrar el registro sencillo del ítem
dc.contributor.author
Gobbi, Beatriz
dc.contributor.author
Van Rompaey, Anton
dc.contributor.author
Loto, Dante Ernesto

dc.contributor.author
Gasparri, Nestor Ignacio

dc.contributor.author
Vanacker, Veerle
dc.date.available
2021-11-17T16:08:40Z
dc.date.issued
2020-12-07
dc.identifier.citation
Gobbi, Beatriz; Van Rompaey, Anton; Loto, Dante Ernesto; Gasparri, Nestor Ignacio; Vanacker, Veerle; Comparing forest structural attributes derived from UAV-based point clouds with conventional forest inventories in the dry chaco; MDPI AG; Remote Sensing; 12; 23; 7-12-2020; 1-23
dc.identifier.issn
2072-4292
dc.identifier.uri
http://hdl.handle.net/11336/147065
dc.description.abstract
Anthropogenic activity leading to forest structural and functional changes needs specific ecological indicators and monitoring techniques. Since decades, forest structure, composition, biomass, and functioning have been studied with ground-based forest inventories. Nowadays, satellites survey the earth, producing imagery at different spatial and temporal resolutions. However, measuring the ecological state of large extensions of forest is still challenging. To reconstruct the three-dimensional forest structure, the structure from motion (SfM) algorithm was applied to imagery taken by an unmanned aerial vehicle (UAV). Structural indicators from UAV-SfM products are then compared to forest inventory indicators of 64 circular plots of 1000 m2 in a subtropical dry forest. Our data indicate that the UAV-SfM indicators provide a valuable alternative for ground-based forest inventory’ indicators of the upper canopy structure. Based on the correlation between ground-based measures and UAV-SfM derived indicators, we can state that the UAV-SfM technique provides reliable estimates of the mean and maximum height of the upper canopy. The performance of UAV-SfM techniques to characterize the undergrowth forest structure is low, as UAV-SfM indicators derived from the point cloud in the lower forest strata are not suited to provide correct estimates of the vegetation density in the lower strata. Besides structural information, UAV-SfM derived indicators, such as canopy cover, can provide relevant ecological information as the indicators are related to structural, functional, and/or compositional aspects, such as biomass or compositional dominance. Although UAV-SfM techniques cannot replace the wealth of data collected during ground-based forest inventories, its strength lies in the three-dimensional (3D) monitoring of the tree canopy at cm-scale resolution, and the versatility of the technique to provide multi-temporal datasets of the horizontal and vertical forest structure.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MDPI AG
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ABOVE-GROUND BIOMASS
dc.subject
CANOPY HEIGHT
dc.subject
CHACO
dc.subject
FOREST INVENTORY
dc.subject
FOREST MONITORING
dc.subject
UAV-SFM
dc.subject.classification
Conservación de la Biodiversidad

dc.subject.classification
Ciencias Biológicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.subject.classification
Sensores Remotos

dc.subject.classification
Ingeniería del Medio Ambiente

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.subject.classification
Silvicultura

dc.subject.classification
Agricultura, Silvicultura y Pesca

dc.subject.classification
CIENCIAS AGRÍCOLAS

dc.title
Comparing forest structural attributes derived from UAV-based point clouds with conventional forest inventories in the dry chaco
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-07T14:30:30Z
dc.journal.volume
12
dc.journal.number
23
dc.journal.pagination
1-23
dc.journal.pais
Suiza

dc.description.fil
Fil: Gobbi, Beatriz. Université Catholique de Louvain; Bélgica
dc.description.fil
Fil: Van Rompaey, Anton. Katholikie Universiteit Leuven; Bélgica
dc.description.fil
Fil: Loto, Dante Ernesto. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; Argentina
dc.description.fil
Fil: Gasparri, Nestor Ignacio. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; Argentina
dc.description.fil
Fil: Vanacker, Veerle. Université Catholique de Louvain; Bélgica
dc.journal.title
Remote Sensing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/12/23/4005
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/rs12234005
Archivos asociados