Mostrar el registro sencillo del ítem

dc.contributor.author
Stegmayer, Georgina  
dc.contributor.author
Milone, Diego Humberto  
dc.contributor.author
Garran, Sergio  
dc.contributor.author
Burdyn, Lourdes  
dc.date.available
2017-04-03T18:10:15Z  
dc.date.issued
2013-07  
dc.identifier.citation
Stegmayer, Georgina; Milone, Diego Humberto; Garran, Sergio; Burdyn, Lourdes; Automatic recognition of quarantine citrus diseases; Elsevier; Expert Systems With Applications; 40; 9; 7-2013; 3512-3517  
dc.identifier.issn
0957-4174  
dc.identifier.uri
http://hdl.handle.net/11336/14701  
dc.description.abstract
Citrus exports to foreign markets are severely limited today by fruit diseases. Some of them, like citrus canker, black spot and scab, are quarantine for the markets. For this reason, it is important to perform strict controls before fruits are exported to avoid the inclusion of citrus affected by them. Nowadays, technical decisions are based on visual diagnosis of human experts, highly dependent on the degree of individual skills. This work presents a model capable of automatic recognize the quarantine diseases. It is based on the combination of a feature selection method and a classifier that has been trained on quarantine illness symptoms. Citrus samples with citrus canker, black spot, scab and other diseases were evaluated. Experimental work was performed on 212 samples of mandarins from a Nova cultivar. The proposed approach achieved a classification rate of quarantine/not-quarantine samples of over 83% for all classes, even when using a small subset (14) of all the available features (90). The results obtained show that the proposed method can be suitable for helping the task of citrus visual diagnosis, in particular, quarantine diseases recognition in fruits.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Pattern Recognition  
dc.subject
Multiclass Classification  
dc.subject
Neural Networks  
dc.subject
Citrus Diseases  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Automatic recognition of quarantine citrus diseases  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-03-22T15:19:23Z  
dc.journal.volume
40  
dc.journal.number
9  
dc.journal.pagination
3512-3517  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Stegmayer, Georgina. Universidad Tecnologica Nacional. Facultad Regional Santa Fe. Centro de Investigacion y Desarrollo de Ingenieria en Sistemas de Informacion; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Garran, Sergio. Instituto Nacional de Tecnología Agropecuaria; Argentina  
dc.description.fil
Fil: Burdyn, Lourdes. Instituto Nacional de Tecnología Agropecuaria; Argentina  
dc.journal.title
Expert Systems With Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2012.12.059  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417412013000