Artículo
On the Solvability of the Periodically Forced Relativistic Pendulum Equation on Time Scales
Fecha de publicación:
05/2020
Editorial:
arXiv.org
Revista:
Cornell University
ISSN:
2331-8422
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study some properties of the range of the relativistic pendulum operator P, that is, the set of possible continuous T-periodic forcing terms p for which the equation P x = p admits a T-periodic solution over a T - periodic time scale T. Writing p ( t) = p 0 ( t)+ p, we prove the existence of a compact interval I ( p 0) such that the problem has a solution if and only if p ∈ I ( p 0) and at least two different solutions when p is an interior point. Furthermore, we give sufficient conditions for nondegeneracy; specifically, we prove that if T is small then I ( p 0) is a neighbourhood of 0 for arbitrary p 0. Well known results for the continuous case are generalized to the time scales context.
Palabras clave:
RELATIVIST PENDULUM
,
PERIODIC SOLUTIONS
,
TIME SCALES
,
DEGENERATE EQUATIONS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Amster, Pablo Gustavo; Kuna, Mariel Paula; Dallos Santos, Dionicio Pastor; On the Solvability of the Periodically Forced Relativistic Pendulum Equation on Time Scales; arXiv.org; Cornell University; 1; 5-2020; 1-11
Compartir