Mostrar el registro sencillo del ítem

dc.contributor.author
López, Jorge A.  
dc.contributor.author
Dorso, Claudio Oscar  
dc.contributor.author
Frank, Guillermo Alberto  
dc.date.available
2021-11-15T22:52:25Z  
dc.date.issued
2020-09  
dc.identifier.citation
López, Jorge A.; Dorso, Claudio Oscar; Frank, Guillermo Alberto; Properties of nuclear pastas; Frontiers Media; Frontiers in Physics; 16; 2; 9-2020; 1-87  
dc.identifier.issn
2296-424X  
dc.identifier.uri
http://hdl.handle.net/11336/146942  
dc.description.abstract
In this review we study the nuclear pastas as they are expected to be formed in neutron star crusts. We start with a study of the pastas formed in nuclear matter (composed of protons and neutrons), we follow with the role of the electron gas on the formation of pastas, and we then investigate the pastas in neutron star matter (nuclear matter embedded in an electron gas). Nuclear matter (NM) at intermediate temperatures (1 MeV ≲ T ≲ 15 MeV), at saturation and sub-saturation densities, and with proton content ranging from 30% to 50% was found to have liquid, gaseous and liquid-gas mixed phases. The isospin-dependent phase diagram was obtained along with the critical points, and the symmetry energy was calculated and compared to experimental data and other theories. At low temperatures (T ≲ 1 MeV) NM produces crystal-like structures around saturation densities, and pasta-like structures at sub-saturation densities. Properties of the pasta structures were studied with cluster-recognition algorithms, caloric curve, the radial distribution function, the Lindemann coefficient, Kolmogorov statistics, Minkowski functionals; the symmetry energy of the pasta showed a connection with its morphology. Neutron star matter (NSM) is nuclear matter embedded in an electron gas. The electron gas is included in the calculation by the inclusion of an screened Coulomb potential. To connect the NM pastas with those in neutron star matter (NSM), the role the strength and screening length of the Coulomb interaction have on the formation of the pastas in NM was investigated. Pasta was found to exist even without the presence of the electron gas, but the effect of the Coulomb interaction is to form more defined pasta structures, among other effects. Likewise, it was determined that there is a minimal screening length for the developed structures to be independent of the cell size. Neutron star matter was found to have similar phases as NM, phase transitions, symmetry energy, structure function and thermal conductivity. Like in NM, pasta forms at around T ≈ 1.5 MeV, and liquid-to-solid phase changes were detected at T ≈ 0.5 MeV. The structure function and the symmetry energy were also found to depend on the pasta structures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Frontiers Media  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MOLECULAR DYNAMICS  
dc.subject
NEUTRON STAR MATTER  
dc.subject
NUCLEAR PASTA  
dc.subject
NUCLEAR PHASE TRANSITIONS  
dc.subject
NUCLEAR SYMMETRY ENERGY  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Properties of nuclear pastas  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-09-07T18:24:59Z  
dc.identifier.eissn
2296-424X  
dc.journal.volume
16  
dc.journal.number
2  
dc.journal.pagination
1-87  
dc.journal.pais
Suiza  
dc.journal.ciudad
lausane  
dc.description.fil
Fil: López, Jorge A.. University of Texas at El Paso; Estados Unidos  
dc.description.fil
Fil: Dorso, Claudio Oscar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Frank, Guillermo Alberto. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Frontiers in Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11467-020-1004-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11467-020-1004-2