Artículo
Ladder relations for a class of matrix valued orthogonal polynomials
Fecha de publicación:
02/2021
Editorial:
Wiley Blackwell Publishing, Inc
Revista:
Studies In Applied Mathematics
ISSN:
0022-2526
e-ISSN:
1467-9590
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Using the theory introduced by Casper and Yakimov, we investigate the structure of algebras of differential and difference operators acting on matrix valued orthogonal polynomials (MVOPs) on (Formula presented.), and we derive algebraic and differential relations for these MVOPs. A particular case of importance is that of MVOPs with respect to a matrix weight of the form (Formula presented.) on the real line, where (Formula presented.) is a scalar polynomial of even degree with positive leading coefficient and (Formula presented.) is a constant matrix.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Deaño, Alfredo; Eijsvoogel, Bruno; Román, Pablo Manuel; Ladder relations for a class of matrix valued orthogonal polynomials; Wiley Blackwell Publishing, Inc; Studies In Applied Mathematics; 146; 2; 2-2021; 463-497
Compartir
Altmétricas