Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Rank Dependent Branching-Selection Particle Systems

Groisman, Pablo JoseIcon ; Soprano Loto, NahuelIcon
Fecha de publicación: 08/2020
Editorial: Cornell University
Revista: arXiv.org
ISSN: 2331-8422
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad

Resumen

We consider a large family of branching-selection particle systems. Thebranching rate of each particle depends on its rank and is given by a functionb defined on the unit interval. There is also a killing measure D supportedon the unit interval as well. At branching times, a particle is chosen amongall particles to the left of the branching one by sampling its rank accordingto D. The measure D is allowed to have total mass less than one, whichcorresponds to a positive probability of no killing. Between branching times,particles perform independent Brownian Motions in the real line. This settingincludes several well known models like Branching Brownian Motion (BBM),N-BBM, rank dependent BBM, and many others. We conjecture a scaling limit forthis class of processes and prove such a limit for a related class ofbranching-selection particle system. This family is rich enough to allow us touse the behavior of solutions of the limiting equation to prove the asymptoticvelocity of the rightmost particle under minimal conditions on b and D. Thebehavior turns out to be universal and depends only on b(1) and the totalmass of D. If the total mass is one, the number of particles in the systemN is conserved and the velocities vN converge to 2b(1)‾‾‾‾‾√. When thetotal mass of D is less than one, the number of particles in the system growsup in time exponentially fast and the asymptotic velocity of the rightmost oneis 2b(1)‾‾‾‾‾√ independently of the number of initial particles.
Palabras clave: procesos de ramificación-selección , ecuaciones de reacción-difusion , universalidad
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 381.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/146415
URL: https://arxiv.org/abs/2008.09460
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Groisman, Pablo Jose; Soprano Loto, Nahuel; Rank Dependent Branching-Selection Particle Systems; Cornell University; arXiv.org; 8-2020; 1-21
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES