Artículo
Subresultants of (x−α)m and (x−β)n, Jacobi polynomials and complexity
Fecha de publicación:
11/2020
Editorial:
Academic Press Ltd - Elsevier Science Ltd
Revista:
Journal Of Symbolic Computation
ISSN:
0747-7171
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In an earlier article (Bostan et al., 2017), with Carlos D’Andrea, we described explicit expressions for the coefficients of the order-d polynomial subresultant of (x − α) m and (x − β)n with respect to Bernstein’s set of polynomials {(x − α)j (x − β)d− j , 0 ≤ j ≤ d}, for 0 ≤ d < min{m,n}. The current paper further develops the study of these structured polynomials and shows that the coefficients of the subresultants of (x − α) m and (x − β)n with respect to the monomial basis can be computed in linear arithmetic complexity, which is faster than for arbitrary polynomials. The result is obtained as a consequence of the amazing though seemingly unnoticed fact that these subresultants are scalar multiples of Jacobi polynomials up to an affine change of variables.
Palabras clave:
ALGORITHMS
,
COMPLEXITY
,
JACOBI POLYNOMIALS
,
SUBRESULTANTS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Bostan, Alin; Krick, Teresa Elena Genoveva; Szanto, Agnes; Valdettaro, Marcelo Alejandro; Subresultants of (x−α)m and (x−β)n, Jacobi polynomials and complexity; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 101; 11-2020; 330-351
Compartir
Altmétricas