Artículo
(Non-equilibrium) thermodynamics of integrable models: The Generalized Gibbs Ensemble description of the classical Neumann model
Fecha de publicación:
10/2020
Editorial:
Europhysics Letters
Revista:
Europhysics Letters
ISSN:
0295-5075
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the motion of a classical particle subject to anisotropic harmonic forces and constrained to move on the SN−1 sphere. In the integrable-systems literature this problem is known as the Neumann model. We choose the spring constants in a way that makes the connection with the so-called p = 2 spherical disordered system transparent. We tackle the problem in the N → ∞ limit by introducing a soft version in which the spherical constraint is imposed only on average over initial conditions. We show that the Generalized Gibbs Ensemble, constructed with N conserved charges in involution, captures the long-time averages of all relevant observables of the soft model after sudden changes in the parameters (quenches). We reveal the full dynamic phase diagram with four different phases in which the particles´ position and momentum are both extended, only the position quasi-condenses or condenses, and both condense. The scaling properties of the fluctuations allow us to establish in which of these cases the strict and soft spherical constraints are equivalent. We thus confirm the validity of the GGE hypothesis for the Neumann model on a large portion of the dynamic phase diagram.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Barbier, Damien; Cugliandolo, Leticia F.; Lozano, Gustavo Sergio; Nessi, Emilio Nicolas; (Non-equilibrium) thermodynamics of integrable models: The Generalized Gibbs Ensemble description of the classical Neumann model; Europhysics Letters; Europhysics Letters; 132; 5; 10-2020; 1-8
Compartir