Mostrar el registro sencillo del ítem
dc.contributor.author
Paulin, Mariano Andrés
dc.contributor.author
Garbarino, Gaston
dc.contributor.author
Leyva, Ana Gabriela
dc.contributor.author
Mezouar, Mohamed
dc.contributor.author
Sacanell, Joaquin Gonzalo
dc.date.available
2021-11-08T10:30:07Z
dc.date.issued
2020-03
dc.identifier.citation
Paulin, Mariano Andrés; Garbarino, Gaston; Leyva, Ana Gabriela; Mezouar, Mohamed; Sacanell, Joaquin Gonzalo; Pressure induced stability enhancement of cubic nanostructured CeO2; Molecular Diversity Preservation International; Nanomaterials; 10; 4; 3-2020; 1-9
dc.identifier.issn
2079-4991
dc.identifier.uri
http://hdl.handle.net/11336/146202
dc.description.abstract
Ceria (CeO2)-based materials are widely used in applications such as catalysis, fuel cells and oxygen sensors. Its cubic fluorite structure with a cell parameter similar to that of silicon makes it a candidate for implementation in electronic devices. This structure is stable in a wide temperature and pressure range, with a reported structural phase transition to an orthorhombic phase. In this work, we study the structure of CeO2 under hydrostatic pressures up to 110 GPa simultaneously for the nanometer-and micrometer-sized powders as well as for a single crystal, using He as the pressure-transmitting medium. The first-order transition is clearly present for the micrometer-sized and single-crystal samples, while, for the nanometer grain size powder, it is suppressed up to at least 110 GPa. We show that the stacking fault density increases by two orders of magnitude in the studied pressure range and could act as an internal constraint, avoiding the nucleation of the high-pressure phase.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Molecular Diversity Preservation International
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CERIA
dc.subject
HIGH PRESSURE
dc.subject
NANOPARTICLES
dc.subject
STACKING FAULTS
dc.subject
X-RAY DIFFRACTION
dc.subject.classification
Física de los Materiales Condensados
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Pressure induced stability enhancement of cubic nanostructured CeO2
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-10-18T15:46:28Z
dc.journal.volume
10
dc.journal.number
4
dc.journal.pagination
1-9
dc.journal.pais
Suiza
dc.journal.ciudad
Basel
dc.description.fil
Fil: Paulin, Mariano Andrés. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina
dc.description.fil
Fil: Garbarino, Gaston. European Synchrotron Radiation; Francia
dc.description.fil
Fil: Leyva, Ana Gabriela. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina
dc.description.fil
Fil: Mezouar, Mohamed. European Synchrotron Radiation; Francia
dc.description.fil
Fil: Sacanell, Joaquin Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; Argentina
dc.journal.title
Nanomaterials
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-4991/10/4/650
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/nano10040650
Archivos asociados