Mostrar el registro sencillo del ítem
dc.contributor.author
Grinblat, Gustavo Sergio
dc.contributor.author
Zhang, Haizhong
dc.contributor.author
Nielsen, Michael P.
dc.contributor.author
Krivitsky, Leonid
dc.contributor.author
Berté, Rodrigo
dc.contributor.author
Li, Yi
dc.contributor.author
Tilmann, Benjamin
dc.contributor.author
Cortés, Emiliano
dc.contributor.author
Oulton, Rupert F.
dc.contributor.author
Kuznetsov, Arseniy I.
dc.contributor.author
Maier, Stefan A.
dc.date.available
2021-11-05T16:07:57Z
dc.date.issued
2020-08
dc.identifier.citation
Grinblat, Gustavo Sergio; Zhang, Haizhong; Nielsen, Michael P.; Krivitsky, Leonid; Berté, Rodrigo; et al.; Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation; Science Advances is the American Association for the Advancement of Science; Science Advances; 6; 34; 8-2020; 1-7
dc.identifier.uri
http://hdl.handle.net/11336/146133
dc.description.abstract
High-refractive index nanostructured dielectrics have the ability to locally enhance electromagnetic fields with low losses while presenting high third-order nonlinearities. In this work, we exploit these characteristics to achieve efficient ultrafast all-optical modulation in a crystalline gallium phosphide (GaP) nanoantenna through the optical Kerr effect (OKE) and two-photon absorption (TPA) in the visible/near-infrared range. We show that an individual GaP nanodisk can yield differential reflectivity modulations of up to -40%, with characteristic modulation times between 14 and 66 fs, when probed at the anapole excitation (AE). Numerical simulations reveal that the AE represents a unique condition where both the OKE and TPA contribute with the same modulation sign, maximizing the response. These findings highly outperform previous reports on sub-100-fs all-optical switching from resonant nanoscale dielectrics, which have demonstrated modulation depths no larger than 0.5%, placing GaP nanoantennas as a promising choice for ultrafast all-optical modulation at the nanometer scale.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Science Advances is the American Association for the Advancement of Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Nanoantenas ópticas dieléctricas
dc.subject
Conmutación óptica
dc.subject
Efecto Kerr óptico
dc.subject
Absorción de dos fotones
dc.subject.classification
Nano-materiales
dc.subject.classification
Nanotecnología
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-09-07T18:26:30Z
dc.identifier.eissn
2375-2548
dc.journal.volume
6
dc.journal.number
34
dc.journal.pagination
1-7
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Grinblat, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
dc.description.fil
Fil: Zhang, Haizhong. Institute of Materials Research and Engineering; Singapur
dc.description.fil
Fil: Nielsen, Michael P.. University of New South Wales; Australia
dc.description.fil
Fil: Krivitsky, Leonid. Institute of Materials Research and Engineering; Singapur
dc.description.fil
Fil: Berté, Rodrigo. Ludwig Maximilians Universitat; Alemania
dc.description.fil
Fil: Li, Yi. Ludwig Maximilians Universitat; Alemania
dc.description.fil
Fil: Tilmann, Benjamin. Ludwig Maximilians Universitat; Alemania
dc.description.fil
Fil: Cortés, Emiliano. Ludwig Maximilians Universitat; Alemania
dc.description.fil
Fil: Oulton, Rupert F.. Imperial College London; Reino Unido
dc.description.fil
Fil: Kuznetsov, Arseniy I.. Institute of Materials Research and Engineering; Singapur
dc.description.fil
Fil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania
dc.journal.title
Science Advances
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.abb3123
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1126/sciadv.abb3123
Archivos asociados