Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Analyzing mass media influence using natural language processing and time series analysis

Albanese, FedericoIcon ; Pinto, SebastiánIcon ; Semeshenko, ViktoriyaIcon ; Balenzuela, PabloIcon
Fecha de publicación: 07/2020
Editorial: IOP Publishing
Revista: Journal of Physics: Complexity
ISSN: 2632-072X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

A key question of collective social behavior is related to the influence of mass media on public opinion. Different approaches have been developed to address quantitatively this issue, ranging from field experiments to mathematical models. In this work we propose a combination of tools involving natural language processing and time series analysis. We compare selected features of mass media news articles with measurable manifestation of public opinion. We apply our analysis to news articles belonging to the 2016 US presidential campaign. We compare variations in polls (as a proxy of public opinion) with changes in the connotation of the news (sentiment) or in the agenda (topics) of a selected group of media outlets. Our results suggest that the sentiment content by itself is not enough to understand the differences in polls, but the combination of topics coverage and sentiment content provides an useful insight of the context in which public opinion varies. The methodology employed in this work is far general and can be easily extended to other topics of interest.
Palabras clave: MASS MEDIA INFLUENCE , SENTIMENT ANALYSIS , TIME SERIES ANALYSIS , TOPIC DETECTION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.724Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/146101
URL: https://iopscience.iop.org/article/10.1088/2632-072X/ab8784
DOI: https://dx.doi.org/10.1088/2632-072X/ab8784
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos(IIEP)
Articulos de INST. INTER. DE ECONOMIA POLITICA DE BUENOS AIRES
Citación
Albanese, Federico; Pinto, Sebastián; Semeshenko, Viktoriya; Balenzuela, Pablo; Analyzing mass media influence using natural language processing and time series analysis; IOP Publishing; Journal of Physics: Complexity; 1; 2; 7-2020; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES