Mostrar el registro sencillo del ítem
dc.contributor.author
Dai, Yangyang
dc.contributor.author
Duan, Feng
dc.contributor.author
Feng, Fan
dc.contributor.author
Sun, Zhe
dc.contributor.author
Zhang, Yu
dc.contributor.author
Caiafa, César Federico
dc.contributor.author
Marti Puig, Pere
dc.contributor.author
Solé Casals, Jordi
dc.date.available
2021-11-05T12:38:44Z
dc.date.issued
2021-09
dc.identifier.citation
Dai, Yangyang; Duan, Feng; Feng, Fan; Sun, Zhe; Zhang, Yu; et al.; A fast approach to removing muscle artifacts for EEG with signal serialization based Ensemble Empirical Mode Decomposition; Molecular Diversity Preservation International; Entropy; 23; 1170; 9-2021; 1-16
dc.identifier.issn
1099-4300
dc.identifier.uri
http://hdl.handle.net/11336/146097
dc.description.abstract
An electroencephalogram (EEG) is an electrophysiological signal reflecting the functional state of the brain. As the control signal of the brain-computer interface (BCI), EEG may build a bridge between humans and computers to improve the life quality for patients with movement disorders. The collected EEG signals are extremely susceptible to the contamination of electromyography (EMG) artifacts, affecting their original characteristics. Therefore, EEG denoising is an essential preprocessing step in any BCI system. Previous studies have confirmed that the combination of ensemble empirical mode decomposition (EEMD) and canonical correlation analysis (CCA) can effectively suppress EMG artifacts. However, the time-consuming iterative process of EEMD limits the application of the EEMD-CCA method in real-time monitoring of BCI. Compared with the existing EEMD, the recently proposed signal serialization based EEMD (sEEMD) is a good choice to provide effective signal analysis and fast mode decomposition. In this study, an EMG denoising method based on sEEMD and CCA is discussed. All of the analyses are carried out on semi-simulated data. The results show that, in terms of frequency and amplitude, the intrinsic mode functions (IMFs) decomposed by sEEMD are consistent with the IMFs obtained by EEMD. There is no significant difference in the ability to separate EMG artifacts from EEG signals between the sEEMD-CCA method and the EEMD-CCA method (p > 0.05). Even in the case of heavy contamination (signal-to-noise ratio is less than 2 dB), the relative root mean squared error is about 0.3, and the average correlation coefficient remains above 0.9. The running speed of the sEEMD-CCA method to remove EMG artifacts is significantly improved in comparison with that of EEMD-CCA method (p < 0.05). The running time of the sEEMD-CCA method for three lengths of semi-simulated data is shortened by more than 50%. This indicates that sEEMD-CCA is a promising tool for EMG artifact removal in real-time BCI systems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Molecular Diversity Preservation International
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
EEG
dc.subject
EMG artifact
dc.subject
signal serialization
dc.subject
EEMD
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A fast approach to removing muscle artifacts for EEG with signal serialization based Ensemble Empirical Mode Decomposition
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2021-11-04T13:18:01Z
dc.journal.volume
23
dc.journal.number
1170
dc.journal.pagination
1-16
dc.journal.pais
Suiza
dc.journal.ciudad
Basel
dc.description.fil
Fil: Dai, Yangyang. Nankai University; China
dc.description.fil
Fil: Duan, Feng. Nankai University; China
dc.description.fil
Fil: Feng, Fan. Nankai University; China
dc.description.fil
Fil: Sun, Zhe. RIKEN; Japón
dc.description.fil
Fil: Zhang, Yu. Lehigh University Bethlehem; Estados Unidos
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.description.fil
Fil: Marti Puig, Pere. Central University of Catalonia; España
dc.description.fil
Fil: Solé Casals, Jordi. Central University of Catalonia; España
dc.journal.title
Entropy
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/23/9/1170/htm
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.3390/e23091170
Archivos asociados