Mostrar el registro sencillo del ítem

dc.contributor.author
Dai, Yangyang  
dc.contributor.author
Duan, Feng  
dc.contributor.author
Feng, Fan  
dc.contributor.author
Sun, Zhe  
dc.contributor.author
Zhang, Yu  
dc.contributor.author
Caiafa, César Federico  
dc.contributor.author
Marti Puig, Pere  
dc.contributor.author
Solé Casals, Jordi  
dc.date.available
2021-11-05T12:38:44Z  
dc.date.issued
2021-09  
dc.identifier.citation
Dai, Yangyang; Duan, Feng; Feng, Fan; Sun, Zhe; Zhang, Yu; et al.; A fast approach to removing muscle artifacts for EEG with signal serialization based Ensemble Empirical Mode Decomposition; Molecular Diversity Preservation International; Entropy; 23; 1170; 9-2021; 1-16  
dc.identifier.issn
1099-4300  
dc.identifier.uri
http://hdl.handle.net/11336/146097  
dc.description.abstract
An electroencephalogram (EEG) is an electrophysiological signal reflecting the functional state of the brain. As the control signal of the brain-computer interface (BCI), EEG may build a bridge between humans and computers to improve the life quality for patients with movement disorders. The collected EEG signals are extremely susceptible to the contamination of electromyography (EMG) artifacts, affecting their original characteristics. Therefore, EEG denoising is an essential preprocessing step in any BCI system. Previous studies have confirmed that the combination of ensemble empirical mode decomposition (EEMD) and canonical correlation analysis (CCA) can effectively suppress EMG artifacts. However, the time-consuming iterative process of EEMD limits the application of the EEMD-CCA method in real-time monitoring of BCI. Compared with the existing EEMD, the recently proposed signal serialization based EEMD (sEEMD) is a good choice to provide effective signal analysis and fast mode decomposition. In this study, an EMG denoising method based on sEEMD and CCA is discussed. All of the analyses are carried out on semi-simulated data. The results show that, in terms of frequency and amplitude, the intrinsic mode functions (IMFs) decomposed by sEEMD are consistent with the IMFs obtained by EEMD. There is no significant difference in the ability to separate EMG artifacts from EEG signals between the sEEMD-CCA method and the EEMD-CCA method (p > 0.05). Even in the case of heavy contamination (signal-to-noise ratio is less than 2 dB), the relative root mean squared error is about 0.3, and the average correlation coefficient remains above 0.9. The running speed of the sEEMD-CCA method to remove EMG artifacts is significantly improved in comparison with that of EEMD-CCA method (p < 0.05). The running time of the sEEMD-CCA method for three lengths of semi-simulated data is shortened by more than 50%. This indicates that sEEMD-CCA is a promising tool for EMG artifact removal in real-time BCI systems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Molecular Diversity Preservation International  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EEG  
dc.subject
EMG artifact  
dc.subject
signal serialization  
dc.subject
EEMD  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A fast approach to removing muscle artifacts for EEG with signal serialization based Ensemble Empirical Mode Decomposition  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-11-04T13:18:01Z  
dc.journal.volume
23  
dc.journal.number
1170  
dc.journal.pagination
1-16  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basel  
dc.description.fil
Fil: Dai, Yangyang. Nankai University; China  
dc.description.fil
Fil: Duan, Feng. Nankai University; China  
dc.description.fil
Fil: Feng, Fan. Nankai University; China  
dc.description.fil
Fil: Sun, Zhe. RIKEN; Japón  
dc.description.fil
Fil: Zhang, Yu. Lehigh University Bethlehem; Estados Unidos  
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.description.fil
Fil: Marti Puig, Pere. Central University of Catalonia; España  
dc.description.fil
Fil: Solé Casals, Jordi. Central University of Catalonia; España  
dc.journal.title
Entropy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/23/9/1170/htm  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.3390/e23091170