Artículo
The structure of reconstructed flows in latent spaces
Fecha de publicación:
09/2020
Editorial:
American Institute of Physics
Revista:
Chaos
ISSN:
1054-1500
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Reconstructing the flow of a dynamical system from experimental data has been a key tool in the study of nonlinear problems. It allows one to discover the equations ruling the dynamics of a system as well as to quantify its complexity. In this work, we study the topology of the flow reconstructed by autoencoders, a dimensionality reduction method based on deep neural networks that has recently proved to be a very powerful tool for this task. We show that, although in many cases proper embeddings can be obtained with this method, it is not always the case that the topological structure of the flow is preserved.
Palabras clave:
neural networks
,
autoencoders
,
nonlinear dynamics
,
chaos
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Uribarri, Gonzalo; Mindlin, Bernardo Gabriel; The structure of reconstructed flows in latent spaces; American Institute of Physics; Chaos; 30; 9; 9-2020; 1-9
Compartir
Altmétricas